Home
Class 12
MATHS
If 9^("log"3("log"(2) x)) = "log"(2)x - ...

If `9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1,` then x =

A

0

B

1

C

2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 9^{\log_3(\log_2 x)} = \log_2 x - (\log_2 x)^2 + 1 \), we will follow these steps: ### Step 1: Rewrite the base We can rewrite \( 9 \) as \( 3^2 \): \[ 9^{\log_3(\log_2 x)} = (3^2)^{\log_3(\log_2 x)} = 3^{2 \log_3(\log_2 x)} \] Using the property \( a^{\log_a b} = b \), we have: \[ 3^{2 \log_3(\log_2 x)} = \log_2 x^2 \] ### Step 2: Set the equation Now we can set the equation: \[ \log_2 x^2 = \log_2 x - (\log_2 x)^2 + 1 \] ### Step 3: Let \( t = \log_2 x \) Let \( t = \log_2 x \). Then the equation becomes: \[ t^2 = t - t^2 + 1 \] ### Step 4: Rearrange the equation Rearranging gives: \[ 2t^2 - t - 1 = 0 \] ### Step 5: Solve the quadratic equation Now we can solve the quadratic equation \( 2t^2 - t - 1 = 0 \) using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 2, b = -1, c = -1 \): \[ t = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} \] \[ t = \frac{1 \pm \sqrt{1 + 8}}{4} = \frac{1 \pm 3}{4} \] Calculating the two possible values: 1. \( t = \frac{4}{4} = 1 \) 2. \( t = \frac{-2}{4} = -\frac{1}{2} \) ### Step 6: Convert back to \( x \) Now we convert back to \( x \): 1. If \( t = 1 \): \[ \log_2 x = 1 \implies x = 2^1 = 2 \] 2. If \( t = -\frac{1}{2} \): \[ \log_2 x = -\frac{1}{2} \implies x = 2^{-\frac{1}{2}} = \frac{1}{\sqrt{2}} \approx 0.707 \] ### Step 7: Determine valid solutions Since we need \( x > 1 \), the only valid solution is: \[ x = 2 \] ### Final Answer Thus, the solution to the equation is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2 (Numerical Value Type for JEE Main)|14 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|13 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -1|71 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

If "log"_(3) x + "log"_(9)x^(2) + "log"_(27)x^(3) = 9 , then x =

If "log"_(6) (x+3)-"log"_(6)x = 2 , then x =

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals

If "log"_(x){"log"_(4)("log"_(x)(5x^(2) +4x^(3)))} =0 , then

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

If (1)/("log"_(x)10) = (2)/("log"_(a)10)-2 , then x =

If x = "log"_(2) 3 " and " y = "log"_(1//2) 5 , then

If "log"_(2) "sin" x - "log"_(2) "cos" x - "log"_(2) (1-"tan"^(2) x) =-1 , then x =

VMC MODULES ENGLISH-FUNCTIONS-Level -2
  1. Number of roots ofequation 3^|x|-|2-|x||=1 is

    Text Solution

    |

  2. If f:R to R is a function satisfying the equation f(2x+3)+f(2x+7)=...

    Text Solution

    |

  3. If 9^("log"3("log"(2) x)) = "log"(2)x - ("log"(2)x)^(2) + 1, then x =

    Text Solution

    |

  4. Range of f(x)=log(sqrt10) (sqrt5 (2 sin x+cos x)+5) is :

    Text Solution

    |

  5. Which of the following function are not periodic (where [.] denotes gr...

    Text Solution

    |

  6. If A is domain of f(x)=lntan^(-1)((x^3-6x^2+11 x-6)(x)(e^x-5) and B is...

    Text Solution

    |

  7. Let f(k)=k/2009 and g(k)=(f^4(k))/((1-f(k))^4+(f(k))^4) then the sum s...

    Text Solution

    |

  8. A function f from the set of natural numbers to the set of integers...

    Text Solution

    |

  9. Let g:R to R be given by g (x) =3+ 4x if g ^(n)(x) = gogogo……og (x) n ...

    Text Solution

    |

  10. Total number of solutions of the equation sin pi x=|ln(e)|x|| is :

    Text Solution

    |

  11. Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

    Text Solution

    |

  12. The period of the function f(x)=4sin^4((4x-3pi)/(6pi^2))+2cos((4x-3pi)...

    Text Solution

    |

  13. The range of f(x)=(2+x-[x])/(1-x+[x]).where [ ] denotes the greatest i...

    Text Solution

    |

  14. The number of roots of the equation 1+log(2)(1-x)=2^(-x), is

    Text Solution

    |

  15. The range of the function f(x)=3|sin x|-2|cos x| is :

    Text Solution

    |

  16. Let x=(((81^(1/( (log(5)9))+3^(3/( log(sqrt6)3)))/(409)).( (sqrt7)^((...

    Text Solution

    |

  17. If f (x)= 0 be a polynomial whose coefficients are all +-1 and whose ...

    Text Solution

    |

  18. Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer ...

    Text Solution

    |

  19. If T(1) is the period of the function f(x)=e^(3x-[x]) and T(2) is the ...

    Text Solution

    |

  20. If f(x)=(4^(x))/(4^(x)+2)," then "f(1/(97))+f((2)/(97))+...+f((96)/(97...

    Text Solution

    |