Home
Class 12
MATHS
If A is domain of f(x)=lntan^(-1)((x^3-6...

If `A` is domain of `f(x)=lntan^(-1)((x^3-6x^2+11 x-6)(x)(e^x-5)` and `B` is the range of `g(x)=sin^2x/4+cosx/4dot` Then find `AnnB`

A

(0,2)

B

(0,1)

C

(1,2)

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the intersection of the domain of the function \( f(x) \) and the range of the function \( g(x) \). ### Step 1: Find the Domain of \( f(x) \) The function is given as: \[ f(x) = \ln\left(\tan^{-1}\left((x^3 - 6x^2 + 11x - 6)(x)(e^x - 5)\right)\right) \] For \( f(x) \) to be defined, the argument of the logarithm must be positive: \[ \tan^{-1}\left((x^3 - 6x^2 + 11x - 6)(x)(e^x - 5)\right) > 0 \] This implies: \[ (x^3 - 6x^2 + 11x - 6)(x)(e^x - 5) > 0 \] ### Step 2: Factor the Polynomial First, we need to factor the polynomial \( x^3 - 6x^2 + 11x - 6 \). By testing possible rational roots, we find that \( x = 1 \), \( x = 2 \), and \( x = 3 \) are roots. Thus, we can factor it as: \[ x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3) \] ### Step 3: Analyze the Sign of the Expression Now, we analyze the sign of the expression: \[ (x - 1)(x - 2)(x - 3)(x)(e^x - 5) > 0 \] The critical points are \( x = 0, 1, 2, 3 \) and the point where \( e^x - 5 = 0 \) which gives \( x = \ln(5) \). ### Step 4: Test Intervals We will test the sign of the expression in the intervals determined by these critical points: 1. \( (-\infty, 0) \) 2. \( (0, 1) \) 3. \( (1, 2) \) 4. \( (2, 3) \) 5. \( (3, \ln(5)) \) 6. \( (\ln(5), \infty) \) By testing points in each interval, we find: - For \( x < 0 \): Negative - For \( 0 < x < 1 \): Positive - For \( 1 < x < 2 \): Negative - For \( 2 < x < 3 \): Positive - For \( 3 < x < \ln(5) \): Negative - For \( x > \ln(5) \): Positive ### Step 5: Determine the Domain From the sign analysis, the intervals where the expression is positive are: \[ (0, 1) \cup (2, 3) \cup (\ln(5), \infty) \] Thus, the domain \( A \) of \( f(x) \) is: \[ A = (0, 1) \cup (2, 3) \cup (\ln(5), \infty) \] ### Step 6: Find the Range of \( g(x) \) The function is given as: \[ g(x) = \frac{\sin^2 x}{4} + \frac{\cos x}{4} \] To find the range, we rewrite it as: \[ g(x) = \frac{1}{4}(\sin^2 x + \cos x) \] The maximum value of \( \sin^2 x \) is 1 and the maximum value of \( \cos x \) is also 1. Thus, the maximum value of \( g(x) \) is: \[ g(x) \leq \frac{1}{4}(1 + 1) = \frac{1}{2} \] The minimum value occurs when \( \sin^2 x = 0 \) and \( \cos x = -1 \): \[ g(x) \geq \frac{1}{4}(0 - 1) = -\frac{1}{4} \] Thus, the range \( B \) of \( g(x) \) is: \[ B = \left[-\frac{1}{4}, \frac{1}{2}\right] \] ### Step 7: Find the Intersection \( A \cap B \) Now we find the intersection of \( A \) and \( B \): - \( A = (0, 1) \cup (2, 3) \cup (\ln(5), \infty) \) - \( B = \left[-\frac{1}{4}, \frac{1}{2}\right] \) The intersection is: \[ A \cap B = (0, \frac{1}{2}] \] ### Final Answer Thus, the intersection \( A \cap B \) is: \[ A \cap B = (0, \frac{1}{2}] \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2 (Numerical Value Type for JEE Main)|14 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|13 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -1|71 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)=1/(4cosx-3)dot

Find the domain of f(x)=sin^(-1)(-x^2)dot

Find the domain of f(x)=sin^(-1)((x^2)/2)dot

Find the range of f(x) =x^(2) -5x + 6

Find the range of y=sin^3x-6sin^2x+11sinx-6.

Find the range of y=sin^3x-6sin^2x+11sinx-6.

Find the domain and range of f(x)=sqrt(x^2-4x+6)

Find the domain and range of f(x)=sqrt(x^2-4x+6)

Find the domain and range of f(x)=(x-3)/(4-x).

Find the domain of f(x)=sqrt((0. 625)^(4-3x)-(1. 6)^(x(x+8)))

VMC MODULES ENGLISH-FUNCTIONS-Level -2
  1. Range of f(x)=log(sqrt10) (sqrt5 (2 sin x+cos x)+5) is :

    Text Solution

    |

  2. Which of the following function are not periodic (where [.] denotes gr...

    Text Solution

    |

  3. If A is domain of f(x)=lntan^(-1)((x^3-6x^2+11 x-6)(x)(e^x-5) and B is...

    Text Solution

    |

  4. Let f(k)=k/2009 and g(k)=(f^4(k))/((1-f(k))^4+(f(k))^4) then the sum s...

    Text Solution

    |

  5. A function f from the set of natural numbers to the set of integers...

    Text Solution

    |

  6. Let g:R to R be given by g (x) =3+ 4x if g ^(n)(x) = gogogo……og (x) n ...

    Text Solution

    |

  7. Total number of solutions of the equation sin pi x=|ln(e)|x|| is :

    Text Solution

    |

  8. Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

    Text Solution

    |

  9. The period of the function f(x)=4sin^4((4x-3pi)/(6pi^2))+2cos((4x-3pi)...

    Text Solution

    |

  10. The range of f(x)=(2+x-[x])/(1-x+[x]).where [ ] denotes the greatest i...

    Text Solution

    |

  11. The number of roots of the equation 1+log(2)(1-x)=2^(-x), is

    Text Solution

    |

  12. The range of the function f(x)=3|sin x|-2|cos x| is :

    Text Solution

    |

  13. Let x=(((81^(1/( (log(5)9))+3^(3/( log(sqrt6)3)))/(409)).( (sqrt7)^((...

    Text Solution

    |

  14. If f (x)= 0 be a polynomial whose coefficients are all +-1 and whose ...

    Text Solution

    |

  15. Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer ...

    Text Solution

    |

  16. If T(1) is the period of the function f(x)=e^(3x-[x]) and T(2) is the ...

    Text Solution

    |

  17. If f(x)=(4^(x))/(4^(x)+2)," then "f(1/(97))+f((2)/(97))+...+f((96)/(97...

    Text Solution

    |

  18. Domain of the function f(x) = log(sqrt(x-4)+sqrt(6-x))

    Text Solution

    |

  19. If logax=alphalogbx,beta,logc x=gamma and logd x=delta ,xne1 and a,b,...

    Text Solution

    |

  20. If f(x) = log ((1+x)/(1-x)), where -1 lt x lt 1 then f((3x+x^(3))/(1+3...

    Text Solution

    |