Home
Class 12
MATHS
The period of the function f(x)=4sin^4((...

The period of the function `f(x)=4sin^4((4x-3pi)/(6pi^2))+2cos((4x-3pi)/(3pi^2))` is

A

`(3pi^(2))/(4)`

B

`(3pi^(3))/(4)`

C

`(4pi^(2))/(3)`

D

`(4pi^(3))/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the period of the function \( f(x) = 4\sin^4\left(\frac{4x - 3\pi}{6\pi^2}\right) + 2\cos\left(\frac{4x - 3\pi}{3\pi^2}\right) \), we will follow these steps: ### Step 1: Identify the inner functions The function consists of two parts: \( \sin^4\left(\frac{4x - 3\pi}{6\pi^2}\right) \) and \( \cos\left(\frac{4x - 3\pi}{3\pi^2}\right) \). We need to find the periods of these inner functions. ### Step 2: Find the period of the sine function The argument of the sine function is \( \frac{4x - 3\pi}{6\pi^2} \). To find the period, we can express it in the form \( \sin(kx) \), where \( k \) is the coefficient of \( x \). 1. Rewrite the argument: \[ \theta = \frac{4x - 3\pi}{6\pi^2} \] This can be rearranged to: \[ \theta = \frac{4}{6\pi^2}x - \frac{3\pi}{6\pi^2} \] Thus, the coefficient of \( x \) is \( k = \frac{4}{6\pi^2} = \frac{2}{3\pi^2} \). 2. The period of \( \sin(kx) \) is given by: \[ T = \frac{2\pi}{k} = \frac{2\pi}{\frac{2}{3\pi^2}} = 2\pi \cdot \frac{3\pi^2}{2} = 3\pi^3 \] ### Step 3: Find the period of the cosine function Now, we consider the cosine function \( \cos\left(\frac{4x - 3\pi}{3\pi^2}\right) \). 1. Rewrite the argument: \[ \phi = \frac{4x - 3\pi}{3\pi^2} \] This can be rearranged to: \[ \phi = \frac{4}{3\pi^2}x - \frac{3\pi}{3\pi^2} \] Thus, the coefficient of \( x \) is \( k = \frac{4}{3\pi^2} \). 2. The period of \( \cos(kx) \) is given by: \[ T = \frac{2\pi}{k} = \frac{2\pi}{\frac{4}{3\pi^2}} = 2\pi \cdot \frac{3\pi^2}{4} = \frac{3\pi^3}{2} \] ### Step 4: Determine the overall period The overall period of the function \( f(x) \) will be the least common multiple (LCM) of the two periods we found: 1. The period of the sine part is \( 3\pi^3 \). 2. The period of the cosine part is \( \frac{3\pi^3}{2} \). To find the LCM of \( 3\pi^3 \) and \( \frac{3\pi^3}{2} \): - The LCM is \( 3\pi^3 \) because it is the larger of the two periods. ### Final Answer Thus, the period of the function \( f(x) \) is: \[ \boxed{3\pi^3} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2 (Numerical Value Type for JEE Main)|14 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|13 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -1|71 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

The fundamental period of the function f(x)=4cos^4((x-pi)/(4pi^2))-2cos((x-pi)/(2pi^2)) is equal to :

The period of the function f(x)=sin((2x+3)/(6pi)) , is

The period of the function f(x)=c^((sin^2x) +sin^2 (x+pi/3)+cosxcos(x+pi/3)) is (where c is constant)

Show that function f(x)=sin(2x+pi/4) is decreasing on ((3pi)/8,(5pi)/8)dot

In each of the following cases find the period of the function if it is periodic. (i) f(x)="sin"(pi x)/(sqrt(2))+"cos"(pi x)/(sqrt(3)) " (ii) " f(x)="sin"(pi x)/(sqrt(3))+"cos"(pi x)/(2sqrt(3))

The minimum value of the function f(x)=x^(10)+x^2+1/(x^(12))+1/((1+sec^(-1)x) is (1) (pi+4)/(pi+1) (2) (3pi+4)/(pi+1) (3) (pi+4)/(3pi+1) (4) 3

Show that the function f(x)=sin(2x+pi//4) is decreasing on (3pi//8,\ 5pi//8) .

int_(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx

If f(x)=sin^(2)x+sin^(2)(x+(2pi)/(3))+sin^(2)(x+(4pi)/(3)) then :

The domain of the function f(x) = log_(3/2) log_(1/2)log_pi log_(pi/4) x is

VMC MODULES ENGLISH-FUNCTIONS-Level -2
  1. Total number of solutions of the equation sin pi x=|ln(e)|x|| is :

    Text Solution

    |

  2. Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

    Text Solution

    |

  3. The period of the function f(x)=4sin^4((4x-3pi)/(6pi^2))+2cos((4x-3pi)...

    Text Solution

    |

  4. The range of f(x)=(2+x-[x])/(1-x+[x]).where [ ] denotes the greatest i...

    Text Solution

    |

  5. The number of roots of the equation 1+log(2)(1-x)=2^(-x), is

    Text Solution

    |

  6. The range of the function f(x)=3|sin x|-2|cos x| is :

    Text Solution

    |

  7. Let x=(((81^(1/( (log(5)9))+3^(3/( log(sqrt6)3)))/(409)).( (sqrt7)^((...

    Text Solution

    |

  8. If f (x)= 0 be a polynomial whose coefficients are all +-1 and whose ...

    Text Solution

    |

  9. Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer ...

    Text Solution

    |

  10. If T(1) is the period of the function f(x)=e^(3x-[x]) and T(2) is the ...

    Text Solution

    |

  11. If f(x)=(4^(x))/(4^(x)+2)," then "f(1/(97))+f((2)/(97))+...+f((96)/(97...

    Text Solution

    |

  12. Domain of the function f(x) = log(sqrt(x-4)+sqrt(6-x))

    Text Solution

    |

  13. If logax=alphalogbx,beta,logc x=gamma and logd x=delta ,xne1 and a,b,...

    Text Solution

    |

  14. If f(x) = log ((1+x)/(1-x)), where -1 lt x lt 1 then f((3x+x^(3))/(1+3...

    Text Solution

    |

  15. Find the period of the real-valued function satisfying f(x)+f(x+4)=f(x...

    Text Solution

    |

  16. If f: R->(-1,\ 1) is defined by f(x)=(-x|x|)/(1+x^2) , then f^(-1)(x) ...

    Text Solution

    |

  17. Solve 4log(x//2)(sqrt(x))+ 2 log(4x)(x^(2)) = 3log(2x)(x^(3)).

    Text Solution

    |

  18. The domain of function f (x) = log ([x+(1)/(2)])(2x ^(2) + x-1), whe...

    Text Solution

    |

  19. Find the range of y=|x-5|/(x-5)

    Text Solution

    |

  20. The function f(x)=sqrt(cos(sinx))+sin^-1((1+x^2)/(2x)) is defined for ...

    Text Solution

    |