Home
Class 12
MATHS
Let x=(((81^(1/( (log(5)9))+3^(3/( log(...

Let `x=(((81^(1/( (log_(5)9))+3^(3/( log_(sqrt6)3)))/(409)).( (sqrt7)^((2)/(log_(25)7))-125^( log_(25)6)))` then value of `log_(2)x` is equal to :

A

0

B

1

C

`-1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression for \( x \) and find the value of \( \log_2 x \), we will break it down step by step. ### Step 1: Rewrite the expression for \( x \) The expression for \( x \) is given as: \[ x = \frac{81^{\frac{1}{\log_5 9}} + 3^{\frac{3}{\log_{\sqrt{6}} 3}}}{409} \left( \sqrt{7}^{\frac{2}{\log_{25} 7}} - 125^{\log_{25} 6} \right) \] ### Step 2: Simplify \( 81^{\frac{1}{\log_5 9}} \) Using the property \( a^{\frac{1}{\log_b a}} = b \): \[ 81^{\frac{1}{\log_5 9}} = 9^{\log_5 81} \] Since \( 81 = 9^2 \): \[ 9^{\log_5 81} = 9^{\log_5 (9^2)} = 9^{2 \log_5 9} = 5^2 = 25 \] ### Step 3: Simplify \( 3^{\frac{3}{\log_{\sqrt{6}} 3}} \) Using the same property: \[ 3^{\frac{3}{\log_{\sqrt{6}} 3}} = 3^{3 \cdot \log_3 \sqrt{6}} = 6^{\frac{3}{2}} = 6\sqrt{6} \] ### Step 4: Combine the results Now we can substitute back into the expression for \( x \): \[ x = \frac{25 + 6\sqrt{6}}{409} \left( \sqrt{7}^{\frac{2}{\log_{25} 7}} - 125^{\log_{25} 6} \right) \] ### Step 5: Simplify \( \sqrt{7}^{\frac{2}{\log_{25} 7}} \) Using the property again: \[ \sqrt{7}^{\frac{2}{\log_{25} 7}} = 7^{\log_{25} \sqrt{7}} = 25 \] ### Step 6: Simplify \( 125^{\log_{25} 6} \) Since \( 125 = 5^3 \): \[ 125^{\log_{25} 6} = 5^{3 \log_{25} 6} = 6^{\frac{3}{2}} = 6\sqrt{6} \] ### Step 7: Substitute back into \( x \) Now we can substitute these results back into the expression for \( x \): \[ x = \frac{25 + 6\sqrt{6}}{409} \left( 25 - 6\sqrt{6} \right) \] ### Step 8: Calculate the final value of \( x \) Calculating the expression inside the parentheses: \[ x = \frac{(25 + 6\sqrt{6})(25 - 6\sqrt{6})}{409} \] Using the difference of squares: \[ = \frac{25^2 - (6\sqrt{6})^2}{409} = \frac{625 - 216}{409} = \frac{409}{409} = 1 \] ### Step 9: Find \( \log_2 x \) Finally, we find: \[ \log_2 x = \log_2 1 = 0 \] ### Final Answer: The value of \( \log_2 x \) is \( 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2 (Numerical Value Type for JEE Main)|14 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|13 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -1|71 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

Compute the following (81^(1/((log)_5 9))+3^(3/((log)_(sqrt(6))3)))/(409)dot((sqrt(7))^(2/((log)_(25)7))-(125)^((log)_(25)6))

If log_(sqrt(2)) sqrt(x) +log_(2)(x) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

Let P=(5)/((1)/(log_(2)x)+(1)/(log_(3)x)+(1)/(log_(4)x)+(1)/(log_(5)x))and (120)^(P)=32 , then the value of x be :

The value of ((log_(2)9)^(2))^(1/(log_(2)(log_(2)9)))xx(sqrt7)^(1/(log_(4)7)) is ________.

If log_(3)27.log_x7=log_(27)x.log_(7)3 , the least value of x is

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

Find the value of 3^((4)/(log_(2)9))+27^((1)/(log_(49)9))+81^((1)/(log_(4)3))

If 5^(3x^(2)"log"_(10)2) = 2^((x + (1)/(2))"log"_(10) 25) , then x equals to

The value of log_((8-3sqrt7))(8+3sqrt7) is

VMC MODULES ENGLISH-FUNCTIONS-Level -2
  1. The number of roots of the equation 1+log(2)(1-x)=2^(-x), is

    Text Solution

    |

  2. The range of the function f(x)=3|sin x|-2|cos x| is :

    Text Solution

    |

  3. Let x=(((81^(1/( (log(5)9))+3^(3/( log(sqrt6)3)))/(409)).( (sqrt7)^((...

    Text Solution

    |

  4. If f (x)= 0 be a polynomial whose coefficients are all +-1 and whose ...

    Text Solution

    |

  5. Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer ...

    Text Solution

    |

  6. If T(1) is the period of the function f(x)=e^(3x-[x]) and T(2) is the ...

    Text Solution

    |

  7. If f(x)=(4^(x))/(4^(x)+2)," then "f(1/(97))+f((2)/(97))+...+f((96)/(97...

    Text Solution

    |

  8. Domain of the function f(x) = log(sqrt(x-4)+sqrt(6-x))

    Text Solution

    |

  9. If logax=alphalogbx,beta,logc x=gamma and logd x=delta ,xne1 and a,b,...

    Text Solution

    |

  10. If f(x) = log ((1+x)/(1-x)), where -1 lt x lt 1 then f((3x+x^(3))/(1+3...

    Text Solution

    |

  11. Find the period of the real-valued function satisfying f(x)+f(x+4)=f(x...

    Text Solution

    |

  12. If f: R->(-1,\ 1) is defined by f(x)=(-x|x|)/(1+x^2) , then f^(-1)(x) ...

    Text Solution

    |

  13. Solve 4log(x//2)(sqrt(x))+ 2 log(4x)(x^(2)) = 3log(2x)(x^(3)).

    Text Solution

    |

  14. The domain of function f (x) = log ([x+(1)/(2)])(2x ^(2) + x-1), whe...

    Text Solution

    |

  15. Find the range of y=|x-5|/(x-5)

    Text Solution

    |

  16. The function f(x)=sqrt(cos(sinx))+sin^-1((1+x^2)/(2x)) is defined for ...

    Text Solution

    |

  17. Draw the graph for y=({x}-1)^(2).

    Text Solution

    |

  18. The domain of the function f(x)=(sec^(-1)x)/(sqrt(x-[x])) , where [x] ...

    Text Solution

    |

  19. The domain of definition of the function f(x)=log(2)[-(log(2)x)^(2)+5...

    Text Solution

    |

  20. The function f(x) = sec[log(x + sqrt(1+x^2))] is

    Text Solution

    |