Home
Class 12
MATHS
If T(1) is the period of the function f(...

If `T_(1)` is the period of the function `f(x)=e^(3x-[x]) and T_(2)` is the period of the function `g(x)=e^(3-[x])``([*]` denotes the greatest integer function ), then (a) `T_(1)=T_(2)` (b) `T_(1)=(T_(2))/(3)` (c) `T_(1)=3T_(2)` (d) None of these

A

`T_(1)=T_(2)`

B

`T_(1)=(T_(2))/(3)`

C

`T_(1)=3T_(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the periods \( T_1 \) and \( T_2 \) of the functions \( f(x) = e^{3x - [x]} \) and \( g(x) = e^{3 - [x]} \), we will analyze each function step by step. ### Step 1: Understanding the Greatest Integer Function The greatest integer function, denoted by \([x]\), gives the largest integer less than or equal to \(x\). We can express \(x\) as: \[ x = [x] + \{x\} \] where \(\{x\} = x - [x]\) is the fractional part of \(x\). ### Step 2: Analyzing \( f(x) \) For the function \( f(x) = e^{3x - [x]} \): \[ f(x) = e^{3([x] + \{x\}) - [x]} = e^{3[x] + 3\{x\} - [x]} = e^{(3-1)[x] + 3\{x\}} = e^{2[x] + 3\{x\}} \] The term \(2[x]\) is periodic with a period of 1 because \([x]\) increases by 1 for every integer increase in \(x\). The term \(3\{x\}\) is periodic with a period of 1 as well since \(\{x\}\) resets every time \(x\) increases by 1. Thus, the overall function \(f(x)\) has a period of: \[ T_1 = 1 \] ### Step 3: Analyzing \( g(x) \) For the function \( g(x) = e^{3 - [x]} \): \[ g(x) = e^{3 - [x]} \] Here, the term \(-[x]\) is periodic with a period of 1, as it also increases by 1 for every integer increase in \(x\). Thus, the function \(g(x)\) also has a period of: \[ T_2 = 1 \] ### Step 4: Comparing the Periods Now we have: \[ T_1 = 1 \quad \text{and} \quad T_2 = 1 \] This implies: \[ T_1 = T_2 \] ### Conclusion The correct answer is: \[ \text{(a) } T_1 = T_2 \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2 (Numerical Value Type for JEE Main)|14 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|13 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -1|71 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

If T_(1) is the period of the function f(x)=e^(3(x-[x])) and T_(2) is the period of the function g(x)=e^(3x-[3x]) ([*] denotes the greatest integer function ), then

If T is the period of the function f(x)=[8x+7]+|tan2pix+cot2pix|-8x (where [.] denotes the greatest integer function), then the value of 1/T is ___________

If T is the period of the function f(x)=[8x+7]+|tan2pix+cot2pix|-8x] (where [.] denotes the greatest integer function), then the value of 1/T is ___________

The value of int_(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest integer function of x) is qeual to

Prove that int_0^x[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denotes the greatest integer function.

The derivative of function f(x) = log_e(2x) w.r.t. t is

int_0^x(2^t)/(2^([t]))dt ,w h e r e[dot] denotes the greatest integer function and x in R^+ , is equal to

If f(x) is periodic function with period, T, then

If f(x)=t^(2)+(3)/(2)t , then f(q-1)=

In (-4,4) the function f(x)=int_(-10)^x (t^2-4)e^(-4t) dt , has

VMC MODULES ENGLISH-FUNCTIONS-Level -2
  1. If f (x)= 0 be a polynomial whose coefficients are all +-1 and whose ...

    Text Solution

    |

  2. Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer ...

    Text Solution

    |

  3. If T(1) is the period of the function f(x)=e^(3x-[x]) and T(2) is the ...

    Text Solution

    |

  4. If f(x)=(4^(x))/(4^(x)+2)," then "f(1/(97))+f((2)/(97))+...+f((96)/(97...

    Text Solution

    |

  5. Domain of the function f(x) = log(sqrt(x-4)+sqrt(6-x))

    Text Solution

    |

  6. If logax=alphalogbx,beta,logc x=gamma and logd x=delta ,xne1 and a,b,...

    Text Solution

    |

  7. If f(x) = log ((1+x)/(1-x)), where -1 lt x lt 1 then f((3x+x^(3))/(1+3...

    Text Solution

    |

  8. Find the period of the real-valued function satisfying f(x)+f(x+4)=f(x...

    Text Solution

    |

  9. If f: R->(-1,\ 1) is defined by f(x)=(-x|x|)/(1+x^2) , then f^(-1)(x) ...

    Text Solution

    |

  10. Solve 4log(x//2)(sqrt(x))+ 2 log(4x)(x^(2)) = 3log(2x)(x^(3)).

    Text Solution

    |

  11. The domain of function f (x) = log ([x+(1)/(2)])(2x ^(2) + x-1), whe...

    Text Solution

    |

  12. Find the range of y=|x-5|/(x-5)

    Text Solution

    |

  13. The function f(x)=sqrt(cos(sinx))+sin^-1((1+x^2)/(2x)) is defined for ...

    Text Solution

    |

  14. Draw the graph for y=({x}-1)^(2).

    Text Solution

    |

  15. The domain of the function f(x)=(sec^(-1)x)/(sqrt(x-[x])) , where [x] ...

    Text Solution

    |

  16. The domain of definition of the function f(x)=log(2)[-(log(2)x)^(2)+5...

    Text Solution

    |

  17. The function f(x) = sec[log(x + sqrt(1+x^2))] is

    Text Solution

    |

  18. Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R and f(0)=k, then

    Text Solution

    |

  19. Let f be a real valued function such that for any real x f(15+x)=f(15-...

    Text Solution

    |

  20. The value of int(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] de...

    Text Solution

    |