Home
Class 12
MATHS
If f(x) = log ((1+x)/(1-x)), where -1 lt...

If `f(x) = log ((1+x)/(1-x))`, where `-1 lt x lt 1` then `f((3x+x^(3))/(1+3x^(2))) - f((2x)/(1+x^(2)))` is equal to

A

`[f(x)]^(3)`

B

`[f(x)]^(2)`

C

`-f(x)`

D

f(x)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( f\left(\frac{3x + x^3}{1 + 3x^2}\right) - f\left(\frac{2x}{1 + x^2}\right) \) where \( f(x) = \log\left(\frac{1+x}{1-x}\right) \). ### Step-by-Step Solution: 1. **Identify the Function**: We have \( f(x) = \log\left(\frac{1+x}{1-x}\right) \). 2. **Substitute the First Expression**: Let \( a = \frac{3x + x^3}{1 + 3x^2} \). Then, we need to find \( f(a) = \log\left(\frac{1 + a}{1 - a}\right) \). 3. **Calculate \( 1 + a \) and \( 1 - a \)**: - \( 1 + a = 1 + \frac{3x + x^3}{1 + 3x^2} = \frac{(1 + 3x^2) + (3x + x^3)}{1 + 3x^2} = \frac{1 + 3x + 3x^2 + x^3}{1 + 3x^2} \) - \( 1 - a = 1 - \frac{3x + x^3}{1 + 3x^2} = \frac{(1 + 3x^2) - (3x + x^3)}{1 + 3x^2} = \frac{1 - 3x + 3x^2 - x^3}{1 + 3x^2} \) 4. **Combine the Expressions**: Now, we can express \( f(a) \): \[ f(a) = \log\left(\frac{1 + a}{1 - a}\right) = \log\left(\frac{1 + 3x + 3x^2 + x^3}{1 - 3x + 3x^2 - x^3}\right) \] 5. **Substitute the Second Expression**: Let \( b = \frac{2x}{1 + x^2} \). Then, we need to find \( f(b) = \log\left(\frac{1 + b}{1 - b}\right) \). 6. **Calculate \( 1 + b \) and \( 1 - b \)**: - \( 1 + b = 1 + \frac{2x}{1 + x^2} = \frac{(1 + x^2) + 2x}{1 + x^2} = \frac{1 + 2x + x^2}{1 + x^2} \) - \( 1 - b = 1 - \frac{2x}{1 + x^2} = \frac{(1 + x^2) - 2x}{1 + x^2} = \frac{1 - 2x + x^2}{1 + x^2} \) 7. **Combine the Expressions**: Now, we can express \( f(b) \): \[ f(b) = \log\left(\frac{1 + b}{1 - b}\right) = \log\left(\frac{1 + 2x + x^2}{1 - 2x + x^2}\right) \] 8. **Subtract the Two Functions**: Now we need to find: \[ f(a) - f(b) = \log\left(\frac{1 + 3x + 3x^2 + x^3}{1 - 3x + 3x^2 - x^3}\right) - \log\left(\frac{1 + 2x + x^2}{1 - 2x + x^2}\right) \] This simplifies to: \[ = \log\left(\frac{(1 + 3x + 3x^2 + x^3)(1 - 2x + x^2)}{(1 - 3x + 3x^2 - x^3)(1 + 2x + x^2)}\right) \] 9. **Final Result**: After simplification, we find that: \[ f\left(\frac{3x + x^3}{1 + 3x^2}\right) - f\left(\frac{2x}{1 + x^2}\right) = 0 \] ### Conclusion: Thus, the answer is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2 (Numerical Value Type for JEE Main)|14 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|13 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -1|71 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x)="log"(1+x)/(1-x) , then prove that: f((2x)/(1+x^(2)))=2f(x)

If f(x)=log((1+x)/(1-x))a n dg(x)=((3x+x^3)/(1+3x^2)) , then f(g(x)) is equal to (a) f(3x) (b) {f(x)}^3 (c) 3f(x) (d) -f(x)

If f(x)=log((1+x)/(1-x))a n dt h e nf((2x)/(1+x^2)) is equal to {f(x)}^2 (b) {f(x)}^3 (c) 2 f(x) (d) 3f(x)

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

f(x)=sqrt(log((3x-x^(2))/(x-1)))

If the function f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))) (" where, "AA 0 lt x lt 1), then the value of |sqrt3f'((1)/(2))| is equal to ("take "sqrt3=1.73)

Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln (ax ^(2)+ bx +c))/(x ^(2)),,, -1 le x lt 0),(1 ,,, x =0),((sin (e ^(x ^(2))-1))/(x ^(2)),,, 0 lt x le 1):} Then which of the following is/are corrent

If f (x) =2+ |x| -|x-1|-|x+1|, then f '((1)/(2)) +f' ((3)/(2))+f' ((5)/(2)) is equal to:

VMC MODULES ENGLISH-FUNCTIONS-Level -2
  1. Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer ...

    Text Solution

    |

  2. If T(1) is the period of the function f(x)=e^(3x-[x]) and T(2) is the ...

    Text Solution

    |

  3. If f(x)=(4^(x))/(4^(x)+2)," then "f(1/(97))+f((2)/(97))+...+f((96)/(97...

    Text Solution

    |

  4. Domain of the function f(x) = log(sqrt(x-4)+sqrt(6-x))

    Text Solution

    |

  5. If logax=alphalogbx,beta,logc x=gamma and logd x=delta ,xne1 and a,b,...

    Text Solution

    |

  6. If f(x) = log ((1+x)/(1-x)), where -1 lt x lt 1 then f((3x+x^(3))/(1+3...

    Text Solution

    |

  7. Find the period of the real-valued function satisfying f(x)+f(x+4)=f(x...

    Text Solution

    |

  8. If f: R->(-1,\ 1) is defined by f(x)=(-x|x|)/(1+x^2) , then f^(-1)(x) ...

    Text Solution

    |

  9. Solve 4log(x//2)(sqrt(x))+ 2 log(4x)(x^(2)) = 3log(2x)(x^(3)).

    Text Solution

    |

  10. The domain of function f (x) = log ([x+(1)/(2)])(2x ^(2) + x-1), whe...

    Text Solution

    |

  11. Find the range of y=|x-5|/(x-5)

    Text Solution

    |

  12. The function f(x)=sqrt(cos(sinx))+sin^-1((1+x^2)/(2x)) is defined for ...

    Text Solution

    |

  13. Draw the graph for y=({x}-1)^(2).

    Text Solution

    |

  14. The domain of the function f(x)=(sec^(-1)x)/(sqrt(x-[x])) , where [x] ...

    Text Solution

    |

  15. The domain of definition of the function f(x)=log(2)[-(log(2)x)^(2)+5...

    Text Solution

    |

  16. The function f(x) = sec[log(x + sqrt(1+x^2))] is

    Text Solution

    |

  17. Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R and f(0)=k, then

    Text Solution

    |

  18. Let f be a real valued function such that for any real x f(15+x)=f(15-...

    Text Solution

    |

  19. The value of int(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] de...

    Text Solution

    |

  20. Statement 1 : Let f : r-{3} be a function given by , f(x+10)=(f(x)-5)...

    Text Solution

    |