Home
Class 12
MATHS
The function f(x)=sqrt(cos(sinx))+sin^-1...

The function `f(x)=sqrt(cos(sinx))+sin^-1((1+x^2)/(2x))` is defined for :

A

`x in {-1,1}`

B

`x in [-1,1]`

C

` x in R`

D

` x in (-1,1)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the domain of the function \( f(x) = \sqrt{\cos(\sin x)} + \sin^{-1}\left(\frac{1 + x^2}{2x}\right) \), we need to analyze the two components of the function separately. ### Step 1: Analyze the square root term \( \sqrt{\cos(\sin x)} \) The square root function is defined when the expression inside the square root is non-negative: \[ \cos(\sin x) \geq 0 \] The cosine function is non-negative in the intervals where its argument is within the range of \( [0, \frac{\pi}{2}] \) and \( [\frac{3\pi}{2}, 2\pi] \). However, since \( \sin x \) oscillates between -1 and 1, we need to check the values of \( \cos(y) \) where \( y = \sin x \). - The range of \( \sin x \) is \( [-1, 1] \). - Therefore, we need to evaluate \( \cos(y) \) for \( y \) in \( [-1, 1] \). Since \( \cos(y) \) is positive for \( y \) in \( [-1, 1] \), we conclude that: \[ \cos(\sin x) \geq 0 \quad \text{is always true for all } x. \] ### Step 2: Analyze the inverse sine term \( \sin^{-1}\left(\frac{1 + x^2}{2x}\right) \) The inverse sine function is defined for values in the range \( [-1, 1] \): \[ -1 \leq \frac{1 + x^2}{2x} \leq 1 \] We will break this into two inequalities. #### Inequality 1: \( \frac{1 + x^2}{2x} \leq 1 \) Cross-multiplying (assuming \( x \neq 0 \)) gives: \[ 1 + x^2 \leq 2x \] Rearranging this, we get: \[ x^2 - 2x + 1 \leq 0 \] This simplifies to: \[ (x - 1)^2 \leq 0 \] The only solution is: \[ x = 1 \] #### Inequality 2: \( \frac{1 + x^2}{2x} \geq -1 \) Cross-multiplying (again assuming \( x \neq 0 \)) gives: \[ 1 + x^2 \geq -2x \] Rearranging this, we have: \[ x^2 + 2x + 1 \geq 0 \] This simplifies to: \[ (x + 1)^2 \geq 0 \] This inequality is always true for all \( x \). ### Conclusion From the analysis, we find that the only value of \( x \) that satisfies both conditions is: \[ x = 1 \] Thus, the function \( f(x) \) is defined only at: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2 (Numerical Value Type for JEE Main)|14 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|13 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -1|71 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=sin^(-1)(sinx) , is

Find the values of x which the function f(x)=sqrt(log_(1//2)((x-1)/(x+5)) is defined.

The function f(x) = sin ^(-1)(cos x) is

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

The function f(x)=cos(log(x+sqrt(x^2+1))) is :

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

The function f(x)=sin(log(x+ sqrt(x^2+1))) ​

The domain function f(x) = 1/ (sqrt((|sin^-1x|-cos^-1|x|))) is given by

Let the function f(x)=4 sinx+3 cos x+ log (|x|+sqrt(1+x^(2))) be defined on the interval [0,1]. The odd extension of f(x) to the inteval [-1,1] is

The function f(x)=cos^(-1)((2[|sinx|+|cosx|])/(sin^2x+2sinx+11/4)) is defined if x belongs to (where [.] represents the greatest integer function)

VMC MODULES ENGLISH-FUNCTIONS-Level -2
  1. Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer ...

    Text Solution

    |

  2. If T(1) is the period of the function f(x)=e^(3x-[x]) and T(2) is the ...

    Text Solution

    |

  3. If f(x)=(4^(x))/(4^(x)+2)," then "f(1/(97))+f((2)/(97))+...+f((96)/(97...

    Text Solution

    |

  4. Domain of the function f(x) = log(sqrt(x-4)+sqrt(6-x))

    Text Solution

    |

  5. If logax=alphalogbx,beta,logc x=gamma and logd x=delta ,xne1 and a,b,...

    Text Solution

    |

  6. If f(x) = log ((1+x)/(1-x)), where -1 lt x lt 1 then f((3x+x^(3))/(1+3...

    Text Solution

    |

  7. Find the period of the real-valued function satisfying f(x)+f(x+4)=f(x...

    Text Solution

    |

  8. If f: R->(-1,\ 1) is defined by f(x)=(-x|x|)/(1+x^2) , then f^(-1)(x) ...

    Text Solution

    |

  9. Solve 4log(x//2)(sqrt(x))+ 2 log(4x)(x^(2)) = 3log(2x)(x^(3)).

    Text Solution

    |

  10. The domain of function f (x) = log ([x+(1)/(2)])(2x ^(2) + x-1), whe...

    Text Solution

    |

  11. Find the range of y=|x-5|/(x-5)

    Text Solution

    |

  12. The function f(x)=sqrt(cos(sinx))+sin^-1((1+x^2)/(2x)) is defined for ...

    Text Solution

    |

  13. Draw the graph for y=({x}-1)^(2).

    Text Solution

    |

  14. The domain of the function f(x)=(sec^(-1)x)/(sqrt(x-[x])) , where [x] ...

    Text Solution

    |

  15. The domain of definition of the function f(x)=log(2)[-(log(2)x)^(2)+5...

    Text Solution

    |

  16. The function f(x) = sec[log(x + sqrt(1+x^2))] is

    Text Solution

    |

  17. Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R and f(0)=k, then

    Text Solution

    |

  18. Let f be a real valued function such that for any real x f(15+x)=f(15-...

    Text Solution

    |

  19. The value of int(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] de...

    Text Solution

    |

  20. Statement 1 : Let f : r-{3} be a function given by , f(x+10)=(f(x)-5)...

    Text Solution

    |