Home
Class 12
MATHS
Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R ...

Let `f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R` and `f(0)=k`, then

A

I,III

B

II,III

C

I,II

D

III,IV

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the functional equation given: \[ f(x+y) + f(x-y) = 2f(x)f(y) \quad \text{for } x, y \in \mathbb{R} \] and the condition \( f(0) = k \). ### Step 1: Substitute \( y = 0 \) Let's substitute \( y = 0 \) into the functional equation: \[ f(x+0) + f(x-0) = 2f(x)f(0) \] This simplifies to: \[ f(x) + f(x) = 2f(x)f(0) \] or \[ 2f(x) = 2f(x)k \] Dividing both sides by 2 (assuming \( f(x) \neq 0 \)) gives us: \[ f(x) = f(x)k \] ### Step 2: Analyze the equation From the equation \( f(x) = f(x)k \), we can rearrange it to: \[ f(x)(1 - k) = 0 \] This implies two cases: 1. \( f(x) = 0 \) for all \( x \) (which is a trivial solution). 2. \( k = 1 \) (which allows \( f(x) \) to be non-zero). ### Step 3: Consider the case \( k = 1 \) If \( k = 1 \), we substitute back into the original functional equation: \[ f(x+y) + f(x-y) = 2f(x)f(y) \] Now let’s check if \( f(x) = \cos(x) \) satisfies this equation. ### Step 4: Check if \( f(x) = \cos(x) \) Substituting \( f(x) = \cos(x) \): The left-hand side becomes: \[ \cos(x+y) + \cos(x-y) \] Using the cosine addition formula: \[ \cos(x+y) + \cos(x-y) = 2\cos(x)\cos(y) \] The right-hand side is: \[ 2f(x)f(y) = 2\cos(x)\cos(y) \] Since both sides are equal, \( f(x) = \cos(x) \) is indeed a solution when \( k = 1 \). ### Step 5: Consider the case \( k = 0 \) If \( k = 0 \), we substitute back into the original functional equation: \[ f(x+y) + f(x-y) = 0 \] This implies that \( f(x+y) = -f(x-y) \), suggesting that \( f \) could be an odd function. ### Step 6: Check if \( f(x) = \sin(x) \) Substituting \( f(x) = \sin(x) \): The left-hand side becomes: \[ \sin(x+y) + \sin(x-y) \] Using the sine addition formula: \[ \sin(x+y) + \sin(x-y) = 2\sin(x)\cos(y) \] The right-hand side is: \[ 2f(x)f(y) = 2\sin(x)\sin(y) \] Since both sides are not equal, \( f(x) = \sin(x) \) does not satisfy the equation. ### Conclusion From the analysis: - If \( k = 1 \), \( f(x) \) can be an even function (like \( \cos(x) \)). - If \( k = 0 \), \( f(x) \) can be odd, but we need to find a specific function. Thus, the final conclusion is: - \( f \) is even if \( k = 1 \). - \( f \) is odd if \( k = 0 \). - \( f \) is always odd for \( k \neq 0 \) and \( k \neq 1 \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2 (Numerical Value Type for JEE Main)|14 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|13 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -1|71 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in R and f(0)!=0 , then

Let f(x+y) + f(x-y) = 2f(x)f(y) for x, y in R and f(0) != 0 . Then f(x) must be

lf f: R rarr R satisfies, f(x + y) = f(x) + f(y), AA x, y in R and f(1) = 4, then sum_(r=1)^n f(r) is

Let a real valued function f satisfy f(x + y) = f(x)f(y)AA x, y in R and f(0)!=0 Then g(x)=f(x)/(1+[f(x)]^2) is

If a function satisfies (x-y)f(x+y)-(x+y)f(x-y)=2(x^2 y-y^3) AA x, y in R and f(1)=2 , then

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

Let f(x+1/y) +f(x-1/y) =2f(x) f(1/y) AA x, y in R , y!=0 and f(0)=0 then the value of f(1) +f(2)=

IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1 , then int_(0)^(10)f(10-x)dx is equal to

Let f:R to R such that f(x+y)+f(x-y)=2f(x)f(y) for all x,y in R . Then,

VMC MODULES ENGLISH-FUNCTIONS-Level -2
  1. Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer ...

    Text Solution

    |

  2. If T(1) is the period of the function f(x)=e^(3x-[x]) and T(2) is the ...

    Text Solution

    |

  3. If f(x)=(4^(x))/(4^(x)+2)," then "f(1/(97))+f((2)/(97))+...+f((96)/(97...

    Text Solution

    |

  4. Domain of the function f(x) = log(sqrt(x-4)+sqrt(6-x))

    Text Solution

    |

  5. If logax=alphalogbx,beta,logc x=gamma and logd x=delta ,xne1 and a,b,...

    Text Solution

    |

  6. If f(x) = log ((1+x)/(1-x)), where -1 lt x lt 1 then f((3x+x^(3))/(1+3...

    Text Solution

    |

  7. Find the period of the real-valued function satisfying f(x)+f(x+4)=f(x...

    Text Solution

    |

  8. If f: R->(-1,\ 1) is defined by f(x)=(-x|x|)/(1+x^2) , then f^(-1)(x) ...

    Text Solution

    |

  9. Solve 4log(x//2)(sqrt(x))+ 2 log(4x)(x^(2)) = 3log(2x)(x^(3)).

    Text Solution

    |

  10. The domain of function f (x) = log ([x+(1)/(2)])(2x ^(2) + x-1), whe...

    Text Solution

    |

  11. Find the range of y=|x-5|/(x-5)

    Text Solution

    |

  12. The function f(x)=sqrt(cos(sinx))+sin^-1((1+x^2)/(2x)) is defined for ...

    Text Solution

    |

  13. Draw the graph for y=({x}-1)^(2).

    Text Solution

    |

  14. The domain of the function f(x)=(sec^(-1)x)/(sqrt(x-[x])) , where [x] ...

    Text Solution

    |

  15. The domain of definition of the function f(x)=log(2)[-(log(2)x)^(2)+5...

    Text Solution

    |

  16. The function f(x) = sec[log(x + sqrt(1+x^2))] is

    Text Solution

    |

  17. Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R and f(0)=k, then

    Text Solution

    |

  18. Let f be a real valued function such that for any real x f(15+x)=f(15-...

    Text Solution

    |

  19. The value of int(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] de...

    Text Solution

    |

  20. Statement 1 : Let f : r-{3} be a function given by , f(x+10)=(f(x)-5)...

    Text Solution

    |