Home
Class 12
MATHS
Statement 1 : Let f : r-{3} be a functio...

Statement 1 : Let `f : r-{3}` be a function given by , `f(x+10)=(f(x)-5)/(f(x)-3)," then " f(10)=f(50)`.
Statement 2 : f (x) is a periodic function.

A

Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1

B

Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given by the equation \( f(x + 10) = \frac{f(x) - 5}{f(x) - 3} \) and determine if \( f(10) = f(50) \) holds true, as well as whether \( f(x) \) is a periodic function. ### Step-by-Step Solution: 1. **Substituting \( x \) with \( x + 10 \)**: \[ f(x + 20) = \frac{f(x + 10) - 5}{f(x + 10) - 3} \] Using the original equation, replace \( f(x + 10) \): \[ f(x + 20) = \frac{\frac{f(x) - 5}{f(x) - 3} - 5}{\frac{f(x) - 5}{f(x) - 3} - 3} \] 2. **Simplifying the Right Side**: To simplify, we need to find a common denominator: \[ f(x + 20) = \frac{\frac{f(x) - 5 - 5(f(x) - 3)}{f(x) - 3}}{\frac{f(x) - 5 - 3(f(x) - 3)}{f(x) - 3}} \] Simplifying the numerator: \[ f(x + 20) = \frac{f(x) - 5 - 5f(x) + 15}{f(x) - 5 - 3f(x) + 9} \] This simplifies to: \[ f(x + 20) = \frac{-4f(x) + 10}{-2f(x) + 4} \] 3. **Further Simplifying**: Dividing both the numerator and denominator by 2: \[ f(x + 20) = \frac{-2f(x) + 5}{-f(x) + 2} \] 4. **Substituting \( x \) with \( x + 20 \)**: Now, substitute \( x \) with \( x + 20 \): \[ f(x + 40) = \frac{-2f(x + 20) + 5}{-f(x + 20) + 2} \] Using the previous result for \( f(x + 20) \): \[ f(x + 40) = \frac{-2\left(\frac{-2f(x) + 5}{-f(x) + 2}\right) + 5}{- \left(\frac{-2f(x) + 5}{-f(x) + 2}\right) + 2} \] 5. **Simplifying Again**: This will yield: \[ f(x + 40) = \frac{4f(x) - 10 + 5(-f(x) + 2)}{2 + 2f(x) - 5} \] After simplification, we find: \[ f(x + 40) = f(x) \] 6. **Conclusion**: Since \( f(x + 40) = f(x) \), we conclude that \( f(x) \) is periodic with a period of 40. Therefore, \( f(10) = f(50) \) holds true. ### Final Statements: - **Statement 1**: \( f(10) = f(50) \) is true. - **Statement 2**: \( f(x) \) is a periodic function is also true.
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2 (Numerical Value Type for JEE Main)|14 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|13 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -1|71 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

Let f: R->R be a function given by f(x)=x^2+1. Find: f^(-1){-5}

If f(x+10) + f(x+4)= 0 , there f(x) is a periodic function with period

Let f: R->R be a function given by f(x)=x^2+1. Find: f^(-1){26}

Let f:R rarr R be a function defined as f(x)=(x^(2)-6)/(x^(2)+2) , then f is

Let f: R->R be a function given by f(x)=x^2+1. Find: f^(-1){10 , 37}

Let f: R->R be a function defined by f(x+1)=(f(x)-5)/(f(x)-3)AAx in R . Then which of the following statement(s) is/are true?

Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2) . Then f is

Consider the function f:R -{1} given by f (x)= (2x)/(x-1) Then f^(-1)(x) =

Let f : R − { − 3, 5 } → R be a function defined as f ( x ) = (2x)/(5x+3) . Write f^(−1)

The function f:R to R given by f(x)=x^(2)+x is

VMC MODULES ENGLISH-FUNCTIONS-Level -2
  1. Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer ...

    Text Solution

    |

  2. If T(1) is the period of the function f(x)=e^(3x-[x]) and T(2) is the ...

    Text Solution

    |

  3. If f(x)=(4^(x))/(4^(x)+2)," then "f(1/(97))+f((2)/(97))+...+f((96)/(97...

    Text Solution

    |

  4. Domain of the function f(x) = log(sqrt(x-4)+sqrt(6-x))

    Text Solution

    |

  5. If logax=alphalogbx,beta,logc x=gamma and logd x=delta ,xne1 and a,b,...

    Text Solution

    |

  6. If f(x) = log ((1+x)/(1-x)), where -1 lt x lt 1 then f((3x+x^(3))/(1+3...

    Text Solution

    |

  7. Find the period of the real-valued function satisfying f(x)+f(x+4)=f(x...

    Text Solution

    |

  8. If f: R->(-1,\ 1) is defined by f(x)=(-x|x|)/(1+x^2) , then f^(-1)(x) ...

    Text Solution

    |

  9. Solve 4log(x//2)(sqrt(x))+ 2 log(4x)(x^(2)) = 3log(2x)(x^(3)).

    Text Solution

    |

  10. The domain of function f (x) = log ([x+(1)/(2)])(2x ^(2) + x-1), whe...

    Text Solution

    |

  11. Find the range of y=|x-5|/(x-5)

    Text Solution

    |

  12. The function f(x)=sqrt(cos(sinx))+sin^-1((1+x^2)/(2x)) is defined for ...

    Text Solution

    |

  13. Draw the graph for y=({x}-1)^(2).

    Text Solution

    |

  14. The domain of the function f(x)=(sec^(-1)x)/(sqrt(x-[x])) , where [x] ...

    Text Solution

    |

  15. The domain of definition of the function f(x)=log(2)[-(log(2)x)^(2)+5...

    Text Solution

    |

  16. The function f(x) = sec[log(x + sqrt(1+x^2))] is

    Text Solution

    |

  17. Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R and f(0)=k, then

    Text Solution

    |

  18. Let f be a real valued function such that for any real x f(15+x)=f(15-...

    Text Solution

    |

  19. The value of int(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] de...

    Text Solution

    |

  20. Statement 1 : Let f : r-{3} be a function given by , f(x+10)=(f(x)-5)...

    Text Solution

    |