Home
Class 12
MATHS
The number of elements in the range of t...

The number of elements in the range of the function :
`y =sin ^(-1) [x ^(2) + (5)/(9)] + cos ^(-1) [x ^(2) -(4)/(9)]` where [.] denotes the greatest integer function is

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|13 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2|47 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

The range of the function y=2sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] is (where, [.] denotes the greatest integer function)

The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/9]+cos^(-1) [x^(2)-4/9] where where [.] denotes the greatest integer function is:

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Sove [cot^(-1) x] + [cos^(-1) x] =0 , where [.] denotes the greatest integer function

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.