Home
Class 12
MATHS
Evaluate the following integrals: int f...

Evaluate the following integrals:
`int frac{2x-1}{(x-1)(x+2)(x-3)}dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{2x-1}{(x-1)(x+2)(x-3)} \, dx, \] we will use the method of partial fractions. Here’s a step-by-step solution: ### Step 1: Set Up Partial Fractions We can express the integrand as a sum of partial fractions: \[ \frac{2x-1}{(x-1)(x+2)(x-3)} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{x-3} \] where \(A\), \(B\), and \(C\) are constants that we need to determine. ### Step 2: Clear the Denominator Multiply both sides by \((x-1)(x+2)(x-3)\): \[ 2x - 1 = A(x+2)(x-3) + B(x-1)(x-3) + C(x-1)(x+2) \] ### Step 3: Expand the Right Side Now, we will expand the right-hand side: 1. For \(A(x+2)(x-3)\): \[ A(x^2 - 3x + 2x - 6) = A(x^2 - x - 6) \] 2. For \(B(x-1)(x-3)\): \[ B(x^2 - 3x - x + 3) = B(x^2 - 4x + 3) \] 3. For \(C(x-1)(x+2)\): \[ C(x^2 + 2x - x - 2) = C(x^2 + x - 2) \] Combining these gives: \[ 2x - 1 = (A + B + C)x^2 + (-A - 4B + C)x + (-6A + 3B - 2C) \] ### Step 4: Set Up Equations Now, we equate coefficients from both sides: 1. Coefficient of \(x^2\): \(A + B + C = 0\) 2. Coefficient of \(x\): \(-A - 4B + C = 2\) 3. Constant term: \(-6A + 3B - 2C = -1\) ### Step 5: Solve the System of Equations We have the following system of equations: 1. \(A + B + C = 0\) 2. \(-A - 4B + C = 2\) 3. \(-6A + 3B - 2C = -1\) From equation 1, we can express \(C\) in terms of \(A\) and \(B\): \[ C = -A - B \] Substituting \(C\) into the other two equations: 1. \(-A - 4B - A - B = 2 \Rightarrow -2A - 5B = 2\) 2. \(-6A + 3B - 2(-A - B) = -1 \Rightarrow -6A + 3B + 2A + 2B = -1 \Rightarrow -4A + 5B = -1\) Now we solve these two equations: 1. \(2A + 5B = -2\) (Equation 4) 2. \(-4A + 5B = -1\) (Equation 5) Subtract Equation 4 from Equation 5: \[ (-4A + 5B) - (2A + 5B) = -1 + 2 \] \[ -6A = 1 \Rightarrow A = -\frac{1}{6} \] Substituting \(A\) back into Equation 4: \[ 2(-\frac{1}{6}) + 5B = -2 \Rightarrow -\frac{1}{3} + 5B = -2 \Rightarrow 5B = -2 + \frac{1}{3} = -\frac{6}{3} + \frac{1}{3} = -\frac{5}{3} \Rightarrow B = -\frac{1}{3} \] Now substituting \(A\) and \(B\) back into \(C = -A - B\): \[ C = -(-\frac{1}{6}) - (-\frac{1}{3}) = \frac{1}{6} + \frac{2}{6} = \frac{3}{6} = \frac{1}{2} \] ### Step 6: Write the Partial Fraction Decomposition Now we have: \[ A = -\frac{1}{6}, \quad B = -\frac{1}{3}, \quad C = \frac{1}{2} \] Thus, we can write: \[ \frac{2x-1}{(x-1)(x+2)(x-3)} = -\frac{1}{6(x-1)} - \frac{1}{3(x+2)} + \frac{1/2}{x-3} \] ### Step 7: Integrate Each Term Now we can integrate term by term: \[ \int \left(-\frac{1}{6(x-1)} - \frac{1}{3(x+2)} + \frac{1/2}{x-3}\right) \, dx \] This gives: \[ -\frac{1}{6} \ln |x-1| - \frac{1}{3} \ln |x+2| + \frac{1}{2} \ln |x-3| + C \] ### Final Answer Thus, the final result of the integral is: \[ -\frac{1}{6} \ln |x-1| - \frac{1}{3} \ln |x+2| + \frac{1}{2} \ln |x-3| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 1|135 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int frac{2x-1}{2x+3}dx

Evaluate the following integrals: int frac{x}{sqrt(x+1)}dx

Evaluate the following integrals: int frac{dx}{xsqrt(x^4-1)}

Evaluate the following integrals: int frac{2x+3}{x^2+3x}dx

Evaluate the following integrals: int frac{x^2}{1-x^3}dx

Evaluate the following integrals: int frac{3x-1}{sqrt(x^2+9)}dx

Evaluate the following integrals: int frac{(x^2+2)}{x+1}dx

Evaluate the following integral: int_1^2|x-3|dx

Evaluate the following integrals: int sqrt(frac{a+x}{a-x}dx

Evaluate the following integrals: int frac{sqrt(1+x^2)}{x^4}dx

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-JEE ADVANCED (ARCHIVE)
  1. Evaluate the following integrals: int frac{2x-1}{(x-1)(x+2)(x-3)}dx

    Text Solution

    |

  2. The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitr...

    Text Solution

    |

  3. If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) ...

    Text Solution

    |

  4. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  5. int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

    Text Solution

    |

  6. int(4e^x+6e^(-x))/(9e^x-4e^(-x))dx=A x+Blog(9e^(2x)-4)+C ,t h e n A= ...

    Text Solution

    |

  7. For any natural m, evaluate int(x^(3m)+x^(2m)+x^(m))(2x^(2m)+3x^(m)+...

    Text Solution

    |

  8. Evaluate: intsqrt((1-sqrt(x))/(1+sqrt(x)))dx

    Text Solution

    |

  9. Evaluate int ((1 - x)/(1 + x)) dx

    Text Solution

    |

  10. Evaluate : int(x^2)/(sqrt(1-x^2))dx

    Text Solution

    |

  11. Evaluate: int(x^2)/((a+b x)^2)\ dx

    Text Solution

    |

  12. int sin x .sin2x.sin3x dx

    Text Solution

    |

  13. Evaluate : int (x)/(1+x^(4)) "dx "

    Text Solution

    |

  14. Evaluate: int1/(1-cotx)dx

    Text Solution

    |

  15. Evaluate: intsqrt(a^2-x^2)\ dx

    Text Solution

    |

  16. Evaluate: int(sqrt(tanx)+sqrt(cotx))dx

    Text Solution

    |

  17. The value of int (sqrt(cos 2x))/(sin x) dx, is equal to

    Text Solution

    |

  18. If f(x) is the integral of (2 sin x-sin 2 x)/(x^(3)), "where x" ne 0, ...

    Text Solution

    |

  19. Evaluate: intsin^(-1)((2x+2)/(sqrt(4x^2+8x+13)))dx

    Text Solution

    |

  20. Evaluate: intcos2thetaln((costheta+sintheta)/(costheta-sin theta))d th...

    Text Solution

    |

  21. Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-...

    Text Solution

    |