Home
Class 12
MATHS
Evaluate the following integrals: int e...

Evaluate the following integrals:
`int e^(tan^-1x)times[frac{1}{1 +x^2}]dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int e^{\tan^{-1} x} \cdot \frac{1}{1 + x^2} \, dx, \] we will follow these steps: ### Step 1: Substitution Let \( t = \tan^{-1} x \). Then, we differentiate both sides with respect to \( x \): \[ \frac{dt}{dx} = \frac{1}{1 + x^2} \implies dx = (1 + x^2) \, dt. \] ### Step 2: Rewrite the Integral Now, substituting \( t \) into the integral, we have: \[ I = \int e^t \cdot \frac{1}{1 + x^2} \cdot (1 + x^2) \, dt. \] Notice that \( \frac{1}{1 + x^2} \cdot (1 + x^2) = 1 \). Therefore, the integral simplifies to: \[ I = \int e^t \, dt. \] ### Step 3: Integrate The integral of \( e^t \) is: \[ \int e^t \, dt = e^t + C, \] where \( C \) is the constant of integration. ### Step 4: Back Substitute Now, we substitute back \( t = \tan^{-1} x \): \[ I = e^{\tan^{-1} x} + C. \] ### Final Answer Thus, the evaluated integral is: \[ \int e^{\tan^{-1} x} \cdot \frac{1}{1 + x^2} \, dx = e^{\tan^{-1} x} + C. \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 1|135 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_0^1x e^x^2dx

Evaluate the following integral: int_0^1tan^(-1)x\ dx

Evaluate the following integral: int_0^1tan^(-1)x\ dx

Evaluate the following integral: int_0^1log(1+x)dx

Evaluate the following integral: int_1^3|x^2-4|dx

Evaluate the following integrals : int_(-1)^1(x+3)dx

Evaluate the following integrals: int(e^x-1)/(e^x+1)dx

Evaluate the following integrals : int1/(1+cos2x)dx

Evaluate the following integral: int_(-2)^2|x+1|dx

Evaluate the following integrals int_1^3(2x+3)dx