Home
Class 12
MATHS
Evaluate the following Integrals. int ...

Evaluate the following Integrals.
`int sqrt(tan x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \sqrt{\tan x} \, dx \), we will use a substitution method. Let's go through the steps systematically. ### Step 1: Substitution Let \( t = \sqrt{\tan x} \). Then, squaring both sides gives us: \[ \tan x = t^2 \] ### Step 2: Differentiate Now, we differentiate both sides with respect to \( x \): \[ \sec^2 x \, dx = 2t \, dt \] From this, we can express \( dx \) in terms of \( t \): \[ dx = \frac{2t}{\sec^2 x} \, dt \] ### Step 3: Express \( \sec^2 x \) in terms of \( t \) Using the identity \( \sec^2 x = 1 + \tan^2 x \), we can substitute \( \tan^2 x \) with \( t^4 \): \[ \sec^2 x = 1 + t^4 \] Thus, we can rewrite \( dx \): \[ dx = \frac{2t}{1 + t^4} \, dt \] ### Step 4: Substitute into the integral Now we substitute \( \sqrt{\tan x} \) and \( dx \) into the integral: \[ \int \sqrt{\tan x} \, dx = \int t \cdot \frac{2t}{1 + t^4} \, dt = \int \frac{2t^2}{1 + t^4} \, dt \] ### Step 5: Split the integral We can split the integral into two parts: \[ \int \frac{2t^2}{1 + t^4} \, dt = \int \frac{2t^2 + 2 - 2}{1 + t^4} \, dt = \int \frac{2}{1 + t^4} \, dt - \int \frac{2}{1 + t^4} \, dt \] ### Step 6: Simplify the integral This gives us: \[ \int \frac{2}{1 + t^4} \, dt \] To evaluate this integral, we can use the formula for the integral of the form \( \int \frac{dx}{a^2 + x^2} \) and some trigonometric identities. ### Step 7: Use a known integral The integral \( \int \frac{1}{1 + t^4} \, dt \) can be evaluated using partial fractions or trigonometric substitution. The result is: \[ \frac{1}{2} \tan^{-1}(t^2) + \frac{1}{2\sqrt{2}} \log \left| \frac{t^2 - 1}{t^2 + 1} \right| + C \] ### Step 8: Substitute back for \( t \) Now, substituting back \( t = \sqrt{\tan x} \): \[ \int \sqrt{\tan x} \, dx = \frac{1}{2} \tan^{-1}(\tan x) + \frac{1}{2\sqrt{2}} \log \left| \frac{\tan x - 1}{\tan x + 1} \right| + C \] ### Final Result Thus, the final result for the integral is: \[ \int \sqrt{\tan x} \, dx = \frac{1}{2} \tan^{-1}(\tan x) + \frac{1}{2\sqrt{2}} \log \left| \frac{\tan x - 1}{\tan x + 1} \right| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 1|135 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following Integrals. int tan^5 x dx

Evaluate the following integrals. int cosx tan^(3) x dx

Evaluate the following Integrals. int (cot x ) dx

Evaluate the following integrals: int1/(sqrt(x))\ dx

Evaluate the following integrals: int sqrt(2ax-x^2dx

Evaluate the following integrals int sqrt((a-x)/(x-b))dx

Evaluate the following integrals. int ( sqrt(x) - (1)/(sqrt(x)))^(2) dx

Evaluate the following integrals. int (dx)/(sqrt(ax + b))

Evaluate the following integral: int_0^1(sqrt(tan^(-1)x))/(1+x^2)dx

Evaluate the following Integrals : int(tan^(-1)x)/(x^(2))dx

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-JEE ADVANCED (ARCHIVE)
  1. Evaluate the following Integrals. int sqrt(tan x) dx

    Text Solution

    |

  2. The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitr...

    Text Solution

    |

  3. If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) ...

    Text Solution

    |

  4. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  5. int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

    Text Solution

    |

  6. int(4e^x+6e^(-x))/(9e^x-4e^(-x))dx=A x+Blog(9e^(2x)-4)+C ,t h e n A= ...

    Text Solution

    |

  7. For any natural m, evaluate int(x^(3m)+x^(2m)+x^(m))(2x^(2m)+3x^(m)+...

    Text Solution

    |

  8. Evaluate: intsqrt((1-sqrt(x))/(1+sqrt(x)))dx

    Text Solution

    |

  9. Evaluate int ((1 - x)/(1 + x)) dx

    Text Solution

    |

  10. Evaluate : int(x^2)/(sqrt(1-x^2))dx

    Text Solution

    |

  11. Evaluate: int(x^2)/((a+b x)^2)\ dx

    Text Solution

    |

  12. int sin x .sin2x.sin3x dx

    Text Solution

    |

  13. Evaluate : int (x)/(1+x^(4)) "dx "

    Text Solution

    |

  14. Evaluate: int1/(1-cotx)dx

    Text Solution

    |

  15. Evaluate: intsqrt(a^2-x^2)\ dx

    Text Solution

    |

  16. Evaluate: int(sqrt(tanx)+sqrt(cotx))dx

    Text Solution

    |

  17. The value of int (sqrt(cos 2x))/(sin x) dx, is equal to

    Text Solution

    |

  18. If f(x) is the integral of (2 sin x-sin 2 x)/(x^(3)), "where x" ne 0, ...

    Text Solution

    |

  19. Evaluate: intsin^(-1)((2x+2)/(sqrt(4x^2+8x+13)))dx

    Text Solution

    |

  20. Evaluate: intcos2thetaln((costheta+sintheta)/(costheta-sin theta))d th...

    Text Solution

    |

  21. Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-...

    Text Solution

    |