Home
Class 12
MATHS
Find int[log(logx)+1/((logx)^2)]dx...

Find `int[log(logx)+1/((logx)^2)]dx`

Text Solution

Verified by Experts

The correct Answer is:
`x[log log x - (1)/(log x)]+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 1|135 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

"F i n d"int[log(logx)+1/((logx)^2)]dx

int(logx/(1+logx)^2)dx

Evaluate: int(log(logx)+1/((logx)^2))dx

Evaluate: int(log(logx)+1/((logx)^2))dx

Evaluate: int(logx)/((1+logx)^2)dx

Evaluate: int{1/(logx)-1/((logx)^2)}\ dx

Evaluate: int{1/(logx)-1/((logx)^2)}\ dx

Evalaute: int((logx-1)/(1+(logx)^2))^2dx

Evaluate int((log x-1)/(1+(logx)^(2)))^(2)dx

Evaluate int(logx)/((1+logx)^(2))dx .