Home
Class 12
MATHS
int(e^x(x^3-x+2))/(1+x^2)^2dx...

`int(e^x(x^3-x+2))/(1+x^2)^2dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{e^x (x^3 - x + 2)}{(1 + x^2)^2} \, dx, \] we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand in a more manageable form. We can express \(x^3 - x + 2\) in a way that will allow us to use integration techniques effectively. \[ x^3 - x + 2 = x^3 + x - 2x + 2 = x^3 + (x - 2x + 2) = x^3 + (1 + 1 - 2x) \] This gives us: \[ \int \frac{e^x (x^3 + (1 - 2x + 1))}{(1 + x^2)^2} \, dx \] ### Step 2: Split the integral Next, we can split the integral into two parts: \[ \int \frac{e^x x^3}{(1 + x^2)^2} \, dx + \int \frac{e^x (1 - 2x + 1)}{(1 + x^2)^2} \, dx \] ### Step 3: Simplify the second integral Now, we simplify the second integral: \[ \int \frac{e^x (2 - 2x)}{(1 + x^2)^2} \, dx = 2 \int \frac{e^x}{(1 + x^2)^2} \, dx - 2 \int \frac{e^x x}{(1 + x^2)^2} \, dx \] ### Step 4: Use substitution for the first integral For the first integral, we can use integration by parts or a suitable substitution. Let's denote: \[ f(x) = \frac{1 + x}{1 + x^2} \] Then, we differentiate \(f(x)\): \[ f'(x) = \frac{(1)(1 + x^2) - (2x)(1 + x)}{(1 + x^2)^2} = \frac{1 + x^2 - 2x - 2x^2}{(1 + x^2)^2} = \frac{1 - x^2 - 2x}{(1 + x^2)^2} \] ### Step 5: Identify the integral Now, we can see that the integrand resembles \(e^x f'(x)\). Thus, we can apply the formula for the integral of the product of an exponential function and a function and its derivative: \[ \int e^x (f(x) + f'(x)) \, dx = e^x f(x) + C \] ### Step 6: Combine results Combining the results, we have: \[ \int \frac{e^x (x^3 - x + 2)}{(1 + x^2)^2} \, dx = e^x \left( \frac{1 + x}{1 + x^2} \right) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{e^x (x^3 - x + 2)}{(1 + x^2)^2} \, dx = e^x \left( \frac{1 + x}{1 + x^2} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 1|135 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx

int(x e^(2x))/((1+2x)^2)dx

(i) int (e^(x) .(1-x))/(x^(2))dx (ii) int ((1+sin x)/(1+cos x))e^(x) dx

int((1-x)e^(x))/(x^(2))dx

int(e^x+1/(e^x))^2\ dx

int (e^x +2x)/(e^x+x^2) dx

Find (i) inte^x(t a n^(-1)x+1/(1+x^2))dx (ii) int((x^2+1)e^x)/((1+x)^2))dx

Evaluate : int (3-x^(2))/(1-2x+x^(2))e^(x)dx

Statement 1: int(xe^(x)dx)/((1+x)^(2))=(e^(x))/(x+1)+C Statement 2: inte^(x)(f(x)+f'(x))dx=e^(x)f(x)+C

Integrate int(x*e^(x))/((1+x)^(2))dx .