Home
Class 12
MATHS
Find the value of int(1)/[(x-1)^3(x+2)^5...

Find the value of `int(1)/[(x-1)^3(x+2)^5]^(1/4)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1}{\left[(x-1)^3 (x+2)^5\right]^{1/4}} \, dx, \] we can simplify the expression and use substitution. Here’s a step-by-step solution: ### Step 1: Simplify the Integral We start by rewriting the integral: \[ \int \frac{1}{\left[(x-1)^3 (x+2)^5\right]^{1/4}} \, dx = \int \frac{1}{(x-1)^{3/4} (x+2}^{5/4}} \, dx. \] ### Step 2: Use Substitution Let’s make a substitution to simplify our work. We can let: \[ t = (x-1)^{1/4}. \] Then, we have: \[ x - 1 = t^4 \implies x = t^4 + 1. \] Now, we need to find \(dx\): \[ dx = \frac{d}{dt}(t^4 + 1) dt = 4t^3 dt. \] ### Step 3: Substitute in the Integral Now we substitute \(x\) and \(dx\) back into the integral: \[ \int \frac{4t^3}{t^{3}((t^4 + 1 + 2)^{5/4})} dt = \int \frac{4t^3}{t^{3}(t^4 + 3)^{5/4}} dt. \] This simplifies to: \[ 4 \int \frac{1}{(t^4 + 3)^{5/4}} dt. \] ### Step 4: Solve the Integral Now we need to evaluate: \[ 4 \int \frac{1}{(t^4 + 3)^{5/4}} dt. \] This integral can be solved using a standard integral table or numerical methods, but for simplicity, we will express it in terms of a function: Let’s denote: \[ I = \int \frac{1}{(t^4 + 3)^{5/4}} dt. \] ### Step 5: Back Substitute After evaluating the integral \(I\), we need to substitute back \(t = (x-1)^{1/4}\): \[ 4I + C = 4 \int \frac{1}{((x-1)^{4} + 3)^{5/4}} dt + C. \] ### Final Result Thus, the final result of the integral is: \[ \int \frac{1}{\left[(x-1)^3 (x+2)^5\right]^{1/4}} \, dx = 4I + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 1|135 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/([(x-1)^3(x+2)^5]^(1/4))dx

Evaluate: int1/([(x-1)^3(x+2)^5]^(1/4))dx

The value of integral int1/[(x-3)^(3)(x+2)^(5)]^(1//4)dx is

Evaluate: int1/((x-1)^(3/4)(x+2)^(5/ 4)\ dx .

The value of int(dx)/(x^(1/5)(1+x^(4/5))^(1/2) is

Find the value of int_(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx .

Evaluate: int(x^2)/((x-1)^3(x+1))dx

Evaluate : int(1)/(5+4x+x^(2))dx

Evaluate: int(x^2+x+1)/((x-1)^3)dx

Evaluate: int(x^2+x+1)/((x-1)^3)dx