Home
Class 12
MATHS
int x^(13/2) (1+x^(5/2))^(1/2) dx = P(1+...

`int x^(13/2) (1+x^(5/2))^(1/2) dx = P(1+x^(5/2))^(7/2)+Q(1+x^(5/2))^(5/2) +R(1+x^(5/2))^(3/2)+C` then P, Q ,R are

A

`A=-(4)/(35),B=-(8)/(25),C=(4)/(15)`

B

`A=-(4)/(35),B=(8)/(25),C=(4)/(15)`

C

`A=(+4)/(35),B=(-8)/(25),C=(+4)/(15)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int x^{\frac{13}{2}} \sqrt{1 + x^{\frac{5}{2}}} \, dx, \] we will use a substitution method. Let's follow the steps: ### Step 1: Substitution Let \[ T = 1 + x^{\frac{5}{2}}. \] Then, differentiate both sides: \[ \frac{dT}{dx} = \frac{5}{2} x^{\frac{3}{2}} \implies dT = \frac{5}{2} x^{\frac{3}{2}} \, dx. \] From this, we can express \(dx\) in terms of \(dT\): \[ dx = \frac{2}{5} \frac{dT}{x^{\frac{3}{2}}}. \] ### Step 2: Express \(x\) in terms of \(T\) From our substitution \(T = 1 + x^{\frac{5}{2}}\), we can express \(x^{\frac{5}{2}}\) as: \[ x^{\frac{5}{2}} = T - 1 \implies x = (T - 1)^{\frac{2}{5}}. \] ### Step 3: Substitute \(dx\) and \(x\) in the integral Now substituting \(dx\) and \(x^{\frac{13}{2}}\) in terms of \(T\): \[ x^{\frac{13}{2}} = \left((T - 1)^{\frac{2}{5}}\right)^{\frac{13}{2}} = (T - 1)^{\frac{13}{5}}. \] Now substitute into the integral: \[ I = \int (T - 1)^{\frac{13}{5}} \sqrt{T} \cdot \frac{2}{5} \frac{dT}{(T - 1)^{\frac{3}{5}}}. \] This simplifies to: \[ I = \frac{2}{5} \int (T - 1)^{\frac{13}{5} - \frac{3}{5}} T^{\frac{1}{2}} \, dT = \frac{2}{5} \int (T - 1)^{\frac{10}{5}} T^{\frac{1}{2}} \, dT = \frac{2}{5} \int (T - 1)^2 T^{\frac{1}{2}} \, dT. \] ### Step 4: Expand and integrate Now we expand \((T - 1)^2\): \[ (T - 1)^2 = T^2 - 2T + 1. \] Thus, \[ I = \frac{2}{5} \int (T^2 - 2T + 1) T^{\frac{1}{2}} \, dT = \frac{2}{5} \int (T^{\frac{5}{2}} - 2T^{\frac{3}{2}} + T^{\frac{1}{2}}) \, dT. \] Now we can integrate term by term: \[ I = \frac{2}{5} \left( \frac{T^{\frac{7}{2}}}{\frac{7}{2}} - 2 \cdot \frac{T^{\frac{5}{2}}}{\frac{5}{2}} + \frac{T^{\frac{3}{2}}}{\frac{3}{2}} \right) + C. \] This simplifies to: \[ I = \frac{2}{5} \left( \frac{2}{7} T^{\frac{7}{2}} - \frac{8}{5} T^{\frac{5}{2}} + \frac{2}{3} T^{\frac{3}{2}} \right) + C. \] ### Step 5: Substitute back for \(T\) Now, substitute back \(T = 1 + x^{\frac{5}{2}}\): \[ I = \frac{4}{35} (1 + x^{\frac{5}{2}})^{\frac{7}{2}} - \frac{8}{25} (1 + x^{\frac{5}{2}})^{\frac{5}{2}} + \frac{4}{15} (1 + x^{\frac{5}{2}})^{\frac{3}{2}} + C. \] ### Step 6: Identify coefficients From the expression, we can identify: - \(P = \frac{4}{35}\) - \(Q = -\frac{8}{25}\) - \(R = \frac{4}{15}\) ### Final Answer Thus, the values of \(P\), \(Q\), and \(R\) are: \[ P = \frac{4}{35}, \quad Q = -\frac{8}{25}, \quad R = \frac{4}{15}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 1|135 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

int((1)/(5+4x^(2))+a^(3x+2))dx

If P_(r) is the coefficient of x^® in the expansion of (1 + x)^(2) (1 + (x)/(2))^(2) (1 + (x)/(2^(2)))^(2) (1 + (x)/(2^(3)))^(2)... prove that P_(r) = (2^(2))/((2^(r) -1))(P_(r-1) + P_(r-2) )and P_(4) = (1072)/(315) .

int(2x+1)/(x^(2)+4x-5)dx

int_(1)^(5) (x^(2) -2x) dx

int(x+2)(x-1)^(5)dx

Evaluate int ((8x+13)/sqrt(4x+7)) dx (A) 1/3 (4x+7)^(3/2) - 1/2 (4x+7)^(1/2) + c (B) 1/6 (4x+7)^(5/2) - 2/3 (4x+7)^(3/2) + c (C) 1/3 (4x+7)^(5/2) - 1/2 (4x+7)^(3/2) + c (D) (4x+7)^(3/2) - 1/2 (4x+7)^(1/2) + c

Evaluate: int(x^(-7/6)-x^(5/6))/(x^(1/3)(x^2+x+1)^(1/2)-x^(1/2)(x^2+x+1)^(1/3))dx

int 5^(x+tan^(-1)x)*((x^(2)+2)/(x^(2)+1))dx .

(5) int(x^(2)-1)/(x(2x-1))dx

(5) int(x^(2)-1)/(x(2x-1))dx

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-LEVEL 2
  1. Find the value of int(1)/[(x-1)^3(x+2)^5]^(1/4)dx

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. int x^(13/2) (1+x^(5/2))^(1/2) dx = P(1+x^(5/2))^(7/2)+Q(1+x^(5/2))^(5...

    Text Solution

    |

  4. Find : int(sqrt(x^2+1)(log(x^2+1)-2logx)/(x^4)dx

    Text Solution

    |

  5. Evaluate: int(x^2)/((xsinx+cosx)^2)\ \ dx

    Text Solution

    |

  6. The value of inte^x((x^3+x+1))/(1+x^2)^(3/2)dx is equal to (A) xe^x(1+...

    Text Solution

    |

  7. int(2)/((2-x)^(2))root3((2-x)/(2+x))dx is equal to

    Text Solution

    |

  8. int(root(3)(1+root(4)(x)))/(sqrtx)\ dx is equal to :

    Text Solution

    |

  9. int\ (root(3)x)(root(5)(1+root(3)(x^4)))dx

    Text Solution

    |

  10. int(x-x^5)^(1/5) / x^6 dx

    Text Solution

    |

  11. int dx/(x(1+root(3)(x))^2) is equal to : (i)3log(x^(1/3)/(1+x^(1/3))+...

    Text Solution

    |

  12. int(1)/(x^(1//2)(1+x^(2))^(5//4))dx is equal to

    Text Solution

    |

  13. int((x-2)^3)/x^2dx=?

    Text Solution

    |

  14. If f(x)=int(2+sqrt(x))/((x+1+sqrt(x))^2)dx and f(0)=0 then the valu...

    Text Solution

    |

  15. If f(x)=int((5x^4+4x^5))/((x^5+x+1)^(2))dx and f(0)=0, then the value ...

    Text Solution

    |

  16. For any natural number t,int(x^(3t)+x^(2t)+x^(t))(2x^(2t)+3x^(t)+6)^(1...

    Text Solution

    |

  17. If l^(r )(x) means log log log … x, the log being repeated r times, th...

    Text Solution

    |

  18. The value of inte^(secx)*sec^3x(sin^2x+cosx+sinx+sinxcosx)dx is

    Text Solution

    |

  19. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  20. int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1...

    Text Solution

    |