Home
Class 12
MATHS
int(1)/(x^(1//2)(1+x^(2))^(5//4))dx is e...

`int(1)/(x^(1//2)(1+x^(2))^(5//4))dx` is equal to

A

`(-2sqrt(x))/(root(4)(1+x^2))+C`

B

`(2sqrtx)/(root(4)(1+x^2))+C`

C

`(-sqrtx)/(root(4)(1+x^2))+C`

D

`(sqrtx)/(root(4)(1+x^2))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{x^{1/2} (1+x^2)^{5/4}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{x^{1/2} (1+x^2)^{5/4}} \, dx \] ### Step 2: Simplify the Denominator We can rewrite the denominator by factoring out \( x^2 \) from \( (1+x^2)^{5/4} \): \[ I = \int \frac{1}{x^{1/2} \cdot (1+x^2)^{5/4}} \, dx = \int \frac{1}{x^{1/2} \cdot (x^2(1+\frac{1}{x^2}))^{5/4}} \, dx \] This gives us: \[ I = \int \frac{1}{x^{1/2} \cdot x^{5/2} \cdot (1+\frac{1}{x^2})^{5/4}} \, dx = \int \frac{1}{x^3 (1+\frac{1}{x^2})^{5/4}} \, dx \] ### Step 3: Substitute \( t = 1 + x^2 \) Now, we will use the substitution \( t = 1 + x^2 \). Then, \( dt = 2x \, dx \) or \( dx = \frac{dt}{2\sqrt{t-1}} \). Also, \( x^2 = t - 1 \) and \( x = \sqrt{t-1} \). Substituting these into the integral gives: \[ I = \int \frac{1}{(t-1)^{3/2} (t)^{5/4}} \cdot \frac{dt}{2\sqrt{t-1}} \] ### Step 4: Simplify the Integral This simplifies to: \[ I = \frac{1}{2} \int \frac{1}{(t-1)^2 t^{5/4}} \, dt \] ### Step 5: Integrate Now we can integrate: Using the formula for integration \( \int t^n \, dt = \frac{t^{n+1}}{n+1} + C \): \[ I = \frac{1}{2} \left( -\frac{4}{t^{1/4}} + C \right) \] ### Step 6: Substitute Back Now we substitute back \( t = 1 + x^2 \): \[ I = -\frac{2}{(1+x^2)^{1/4}} + C \] ### Final Result Thus, the final result of the integral is: \[ I = \frac{2\sqrt{x}}{\sqrt[4]{1+x^2}} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 1|135 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

The value of int1/(x^(2)(x^(4)+1)^(3//4)) dx is equal to

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

int(1-x^(2))/((1+x^(2))sqrt(1+x^(4)))dx is equal to

int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to

int((x4-x)^(1//4))/(x^(5))dx is equal to

int(x+(1)/(x))^(n+5).((x^(2)-1)/(x^(2)))dx is equal to

int(1)/(x(x^(4)-1))dx is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-LEVEL 2
  1. int(x-x^5)^(1/5) / x^6 dx

    Text Solution

    |

  2. int dx/(x(1+root(3)(x))^2) is equal to : (i)3log(x^(1/3)/(1+x^(1/3))+...

    Text Solution

    |

  3. int(1)/(x^(1//2)(1+x^(2))^(5//4))dx is equal to

    Text Solution

    |

  4. int((x-2)^3)/x^2dx=?

    Text Solution

    |

  5. If f(x)=int(2+sqrt(x))/((x+1+sqrt(x))^2)dx and f(0)=0 then the valu...

    Text Solution

    |

  6. If f(x)=int((5x^4+4x^5))/((x^5+x+1)^(2))dx and f(0)=0, then the value ...

    Text Solution

    |

  7. For any natural number t,int(x^(3t)+x^(2t)+x^(t))(2x^(2t)+3x^(t)+6)^(1...

    Text Solution

    |

  8. If l^(r )(x) means log log log … x, the log being repeated r times, th...

    Text Solution

    |

  9. The value of inte^(secx)*sec^3x(sin^2x+cosx+sinx+sinxcosx)dx is

    Text Solution

    |

  10. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  11. int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1...

    Text Solution

    |

  12. int (x^4-1)/(x^2)sqrt(x^4+x^2+1) dx equal to (A) sqrt((x^4+x^2+1)/x) +...

    Text Solution

    |

  13. Evaluate: (sin^3x dx)/((cos^4x+3cos^2x+1)tan^(-1)(secx+cosx)

    Text Solution

    |

  14. integrate x^ x (1+logx)dx is equal to

    Text Solution

    |

  15. Evaluate: int1/(xsqrt(1+x^3))\ dx

    Text Solution

    |

  16. Evaluate: int(x^2-1)/((x^2+1)sqrt(x^4+1))dx

    Text Solution

    |

  17. int1/((1+x^4)sqrt(sqrt(1+x^4)-x^2))dx

    Text Solution

    |

  18. int(dx)/((x^2+4x+5)^2) is equal to 1/2[tan^(-1)(x+1)+("x"+2)/("x"^2+...

    Text Solution

    |

  19. int((3x-2)^2)/x^2dx=?

    Text Solution

    |

  20. If f(x)=int(5x^8+7x^6)/((x^2+1+2x^7))dx,(xge0)andf(0)=0, then the valu...

    Text Solution

    |