Home
Class 12
MATHS
If f(x)=int(2+sqrt(x))/((x+1+sqrt(x))^2...

If `f(x)=int(2+sqrt(x))/((x+1+sqrt(x))^2)dx` and `f(0)=0` then the value of If [f(4)] is: (where [.] represents the greatest integer function) .

A

0

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral function given by: \[ f(x) = \int \frac{2 + \sqrt{x}}{(x + 1 + \sqrt{x})^2} \, dx \] and find \( f(4) \) such that \( f(0) = 0 \), and then determine \([f(4)]\), where \([.]\) denotes the greatest integer function. ### Step 1: Substitution Let us make the substitution \( \sqrt{x} = t \). Then, we have: \[ x = t^2 \quad \text{and} \quad dx = 2t \, dt \] Now we can rewrite the integral: \[ f(x) = \int \frac{2 + t}{(t^2 + 1 + t)^2} \cdot 2t \, dt \] ### Step 2: Simplifying the Integral The integral now becomes: \[ f(t) = 2 \int \frac{(2 + t)t}{(t^2 + t + 1)^2} \, dt \] ### Step 3: Differentiation To simplify the integral further, we can differentiate the function \( \frac{t + 1}{t^2 + t + 1} \): Let \( u = t + 1 \) and \( v = t^2 + t + 1 \). We find: \[ \frac{d}{dt} \left( \frac{u}{v} \right) = \frac{v \cdot u' - u \cdot v'}{v^2} \] Calculating \( u' = 1 \) and \( v' = 2t + 1 \): \[ \frac{d}{dt} \left( \frac{t + 1}{t^2 + t + 1} \right) = \frac{(t^2 + t + 1)(1) - (t + 1)(2t + 1)}{(t^2 + t + 1)^2} \] ### Step 4: Evaluating the Integral After simplifying, we can express \( f(t) \): \[ f(t) = 2 \left( -\frac{t + 1}{t^2 + t + 1} + C \right) \] Substituting back \( t = \sqrt{x} \): \[ f(x) = -2 \frac{\sqrt{x} + 1}{x + 1 + \sqrt{x}} + C \] ### Step 5: Finding the Constant \( C \) Given \( f(0) = 0 \): \[ f(0) = -2 \frac{0 + 1}{0 + 1 + 0} + C = -2 + C = 0 \] Thus, \( C = 2 \). ### Step 6: Final Expression for \( f(x) \) Now we can write the final expression for \( f(x) \): \[ f(x) = -2 \frac{\sqrt{x} + 1}{x + 1 + \sqrt{x}} + 2 \] ### Step 7: Evaluating \( f(4) \) Now we compute \( f(4) \): \[ f(4) = -2 \frac{2 + 1}{4 + 1 + 2} + 2 = -2 \frac{3}{7} + 2 = -\frac{6}{7} + 2 = 2 - \frac{6}{7} = \frac{14}{7} - \frac{6}{7} = \frac{8}{7} \] ### Step 8: Finding the Greatest Integer Function Now we need to find \([f(4)]\): \[ [f(4)] = \left[\frac{8}{7}\right] = 1 \] ### Final Answer Thus, the value of \([f(4)]\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 1|135 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [ ] represents the greatest integer function).

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

Suppose that f is an even, periodic function with period 2 , and f(x)=x for all x in the interval [0,1] . The values of [10f(3. 14)] is (where [.] represents the greatest integer function) ______

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

Draw the graph of f(x) = [x^(2)], x in [0, 2) , where [*] denotes the greatest integer function.

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-LEVEL 2
  1. int(1)/(x^(1//2)(1+x^(2))^(5//4))dx is equal to

    Text Solution

    |

  2. int((x-2)^3)/x^2dx=?

    Text Solution

    |

  3. If f(x)=int(2+sqrt(x))/((x+1+sqrt(x))^2)dx and f(0)=0 then the valu...

    Text Solution

    |

  4. If f(x)=int((5x^4+4x^5))/((x^5+x+1)^(2))dx and f(0)=0, then the value ...

    Text Solution

    |

  5. For any natural number t,int(x^(3t)+x^(2t)+x^(t))(2x^(2t)+3x^(t)+6)^(1...

    Text Solution

    |

  6. If l^(r )(x) means log log log … x, the log being repeated r times, th...

    Text Solution

    |

  7. The value of inte^(secx)*sec^3x(sin^2x+cosx+sinx+sinxcosx)dx is

    Text Solution

    |

  8. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  9. int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1...

    Text Solution

    |

  10. int (x^4-1)/(x^2)sqrt(x^4+x^2+1) dx equal to (A) sqrt((x^4+x^2+1)/x) +...

    Text Solution

    |

  11. Evaluate: (sin^3x dx)/((cos^4x+3cos^2x+1)tan^(-1)(secx+cosx)

    Text Solution

    |

  12. integrate x^ x (1+logx)dx is equal to

    Text Solution

    |

  13. Evaluate: int1/(xsqrt(1+x^3))\ dx

    Text Solution

    |

  14. Evaluate: int(x^2-1)/((x^2+1)sqrt(x^4+1))dx

    Text Solution

    |

  15. int1/((1+x^4)sqrt(sqrt(1+x^4)-x^2))dx

    Text Solution

    |

  16. int(dx)/((x^2+4x+5)^2) is equal to 1/2[tan^(-1)(x+1)+("x"+2)/("x"^2+...

    Text Solution

    |

  17. int((3x-2)^2)/x^2dx=?

    Text Solution

    |

  18. If f(x)=int(5x^8+7x^6)/((x^2+1+2x^7))dx,(xge0)andf(0)=0, then the valu...

    Text Solution

    |

  19. Evaluate the following Integrals : int (sec x .dx)/(sqrt(sin (x+2A...

    Text Solution

    |

  20. intsqrt(x^6+1).(log(x^6+1)-6logx)/(x^10)dx "is" =-(1)/(6)[(2)/(3)t^(3/...

    Text Solution

    |