Home
Class 12
MATHS
If f(x)=int((5x^4+4x^5))/((x^5+x+1)^(2))...

If `f(x)=int((5x^4+4x^5))/((x^5+x+1)^(2))dx` and f(0)=0, then the value of f(1) is :

A

1

B

`(1)/(2)`

C

`(1)/(3)`

D

`(1)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral function \( f(x) = \int \frac{5x^4 + 4x^5}{(x^5 + x + 1)^2} \, dx \) and find \( f(1) \) given that \( f(0) = 0 \). ### Step-by-Step Solution 1. **Rewrite the Integral**: \[ f(x) = \int \frac{5x^4 + 4x^5}{(x^5 + x + 1)^2} \, dx \] 2. **Factor Out Common Terms**: In the numerator, we can factor out \( x^4 \): \[ f(x) = \int \frac{x^4(5 + 4x)}{(x^5 + x + 1)^2} \, dx \] 3. **Substitution**: Let \( t = x^5 + x + 1 \). Then, we differentiate \( t \): \[ dt = (5x^4 + 1) \, dx \quad \Rightarrow \quad dx = \frac{dt}{5x^4 + 1} \] 4. **Rearranging the Integral**: Substitute \( t \) into the integral: \[ f(x) = \int \frac{x^4(5 + 4x)}{t^2} \cdot \frac{dt}{5x^4 + 1} \] 5. **Simplifying the Integral**: The integral simplifies to: \[ f(x) = \int \frac{(5 + 4x)}{t^2} \, dt \] 6. **Integrate**: The integral of \( t^{-2} \) is: \[ \int t^{-2} \, dt = -\frac{1}{t} + C \] 7. **Substituting Back**: Substitute back \( t = x^5 + x + 1 \): \[ f(x) = -\frac{1}{x^5 + x + 1} + C \] 8. **Using the Condition \( f(0) = 0 \)**: We know \( f(0) = 0 \): \[ f(0) = -\frac{1}{0^5 + 0 + 1} + C = -1 + C = 0 \quad \Rightarrow \quad C = 1 \] 9. **Final Expression for \( f(x) \)**: Thus, we have: \[ f(x) = -\frac{1}{x^5 + x + 1} + 1 \] 10. **Evaluate \( f(1) \)**: Now, we find \( f(1) \): \[ f(1) = -\frac{1}{1^5 + 1 + 1} + 1 = -\frac{1}{3} + 1 = 1 - \frac{1}{3} = \frac{2}{3} \] ### Conclusion The value of \( f(1) \) is \( \frac{2}{3} \).
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 1|135 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int(2+sqrt(x))/((x+1+sqrt(x))^2)dx and f(0)=0 then the value of If [f(4)] is: (where [.] represents the greatest integer function) .

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If f(x)=int(3x^4-1)/(x^4+x+1)^2dx and f(0)=0 , then f(-1)= …

If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0) , and f(0) = 0, then the value of f(1) is

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then the value of f(log_(e)2) is

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then The value of f(0) is

Suppose that f(x) is a function of the form f(x)=(ax^(8)+bx^(6)+cx^(4)+dx^(2)+15x+1)/(x), (x ne 0)." If " f(5)=2 , then the value of f(-5) is _________.

Let f : W-> W be a given function satisfying f(x) = f(x-1)+f(x-2) for x<=2 .If f(0)=0 and f(1)=1 , ther find the value of f(2) + f(3) + f(4) + f(5) + f(6) .

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-LEVEL 2
  1. int((x-2)^3)/x^2dx=?

    Text Solution

    |

  2. If f(x)=int(2+sqrt(x))/((x+1+sqrt(x))^2)dx and f(0)=0 then the valu...

    Text Solution

    |

  3. If f(x)=int((5x^4+4x^5))/((x^5+x+1)^(2))dx and f(0)=0, then the value ...

    Text Solution

    |

  4. For any natural number t,int(x^(3t)+x^(2t)+x^(t))(2x^(2t)+3x^(t)+6)^(1...

    Text Solution

    |

  5. If l^(r )(x) means log log log … x, the log being repeated r times, th...

    Text Solution

    |

  6. The value of inte^(secx)*sec^3x(sin^2x+cosx+sinx+sinxcosx)dx is

    Text Solution

    |

  7. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  8. int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1...

    Text Solution

    |

  9. int (x^4-1)/(x^2)sqrt(x^4+x^2+1) dx equal to (A) sqrt((x^4+x^2+1)/x) +...

    Text Solution

    |

  10. Evaluate: (sin^3x dx)/((cos^4x+3cos^2x+1)tan^(-1)(secx+cosx)

    Text Solution

    |

  11. integrate x^ x (1+logx)dx is equal to

    Text Solution

    |

  12. Evaluate: int1/(xsqrt(1+x^3))\ dx

    Text Solution

    |

  13. Evaluate: int(x^2-1)/((x^2+1)sqrt(x^4+1))dx

    Text Solution

    |

  14. int1/((1+x^4)sqrt(sqrt(1+x^4)-x^2))dx

    Text Solution

    |

  15. int(dx)/((x^2+4x+5)^2) is equal to 1/2[tan^(-1)(x+1)+("x"+2)/("x"^2+...

    Text Solution

    |

  16. int((3x-2)^2)/x^2dx=?

    Text Solution

    |

  17. If f(x)=int(5x^8+7x^6)/((x^2+1+2x^7))dx,(xge0)andf(0)=0, then the valu...

    Text Solution

    |

  18. Evaluate the following Integrals : int (sec x .dx)/(sqrt(sin (x+2A...

    Text Solution

    |

  19. intsqrt(x^6+1).(log(x^6+1)-6logx)/(x^10)dx "is" =-(1)/(6)[(2)/(3)t^(3/...

    Text Solution

    |

  20. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |