Home
Class 12
MATHS
For any natural number t,int(x^(3t)+x^(2...

For any natural number `t,int(x^(3t)+x^(2t)+x^(t))(2x^(2t)+3x^(t)+6)^(1//t)dx` is :

A

`(1)/(6(t+1))(2x^(3t)+3x^(2t)+6x^(t))^((t+1)/(t))+C`

B

`(1)/(6t)(2x^(2t)+3x^(t)+6x)^(t)+C`

C

`(1)/(t+1)(x^(3t)+x^(2t)+x^(t))^(2)+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int (x^{3t} + x^{2t} + x^{t})(2x^{2t} + 3x^{t} + 6)^{\frac{1}{t}} \, dx, \] we will follow these steps: ### Step 1: Rewrite the Integral We start with the given integral: \[ I = \int (x^{3t} + x^{2t} + x^{t})(2x^{2t} + 3x^{t} + 6)^{\frac{1}{t}} \, dx. \] ### Step 2: Multiply and Divide by \(x^t\) To simplify the expression, we multiply and divide by \(x^t\): \[ I = \int \frac{(x^{3t} + x^{2t} + x^{t})}{x^t} (2x^{2t} + 3x^{t} + 6)^{\frac{1}{t}} x^t \, dx. \] This gives us: \[ I = \int (x^{2t} + x^{t} + 1)(2x^{2t} + 3x^{t} + 6)^{\frac{1}{t}} \, dx. \] ### Step 3: Substitute \(u\) Let \[ u = 2x^{3t} + 3x^{2t} + 6x^{t}. \] Now we differentiate \(u\) with respect to \(x\): \[ \frac{du}{dx} = (6tx^{3t-1} + 6tx^{2t-1} + 6tx^{t-1}). \] ### Step 4: Express \(dx\) in terms of \(du\) From the differentiation, we can express \(dx\): \[ dx = \frac{du}{6t(x^{3t-1} + x^{2t-1} + x^{t-1})}. \] ### Step 5: Substitute back into the Integral Now substitute \(u\) and \(dx\) back into the integral: \[ I = \int \frac{(x^{2t} + x^{t} + 1)}{6t(x^{3t-1} + x^{2t-1} + x^{t-1})} u^{\frac{1}{t}} \, du. \] ### Step 6: Simplify the Integral Now we can simplify the integral further. The integral now becomes: \[ I = \frac{1}{6t} \int u^{\frac{1}{t}} \, du. \] ### Step 7: Integrate Now we integrate: \[ \int u^{\frac{1}{t}} \, du = \frac{u^{\frac{1}{t} + 1}}{\frac{1}{t} + 1} + C. \] ### Step 8: Substitute \(u\) back Substituting back \(u\): \[ I = \frac{1}{6t} \cdot \frac{(2x^{3t} + 3x^{2t} + 6x^{t})^{\frac{1}{t} + 1}}{\frac{1}{t} + 1} + C. \] ### Final Result Thus, the final result for the integral is: \[ I = \frac{(2x^{3t} + 3x^{2t} + 6x^{t})^{\frac{1}{t} + 1}}{6t(\frac{1}{t} + 1)} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 1|135 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

f (x) = int _(0) ^(x) e ^(t ^(3)) (t ^(2) -1) (t+1) ^(2011) dt (x gt 0) then :

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

Let f(x)=e^((P+1)x)-e^(x) for real number Pgt0, then Let g(t)=int_(t)^(t+1)f(x)e^(t-x)dx. The value of t=t_(P), for which g(t) is minimum, is

For integral int f(x- a/x)*(1+a/x^(2))dx , put x-a/x=t For integral int f(x+a/x)*(1-(a)/(x^(2)))dx , put x+a/x =t For integral int f(x^(2)-(a)/(x^(2)))*(x+(a)/(x^(3)))dx , put x^(2)-(a)/(x^(2))=t For integral int f(x^(2)+(a)/(x^(2)))*(x-(a)/(x^(3)))dx , put x^(2)+(a)/(x^(2))=t many integrands can be brought into above forms by suitable reductions or transformations . int((x-1))/((x+1)sqrt(x^(3)+x^(2)+x))dx

For integral int f(x- a/x)*(1+a/x^(2))dx , put x-a/x=t For integral int f(x+a/x)*(1-(a)/(x^(2)))dx , put x+a/x =t For integral int f(x^(2)-(a)/(x^(2)))*(x+(a)/(x^(3)))dx , put x^(2)-(a)/(x^(2))=t For integral int f(x^(2)+(a)/(x^(2)))*(x-(a)/(x^(3)))dx , put x^(2)+(a)/(x^(2))=t many integrands can be brought into above forms by suitable reductions or transformations . int(x^(4)-2)/(x^(2)sqrt(x^(4)+x^(2)+2))dx

For integral int f(x- a/x)*(1+a/x^(2))dx , put x-a/x=t For integral int f(x+a/x)*(1-(a)/(x^(2)))dx , put x+a/x =t For integral int f(x^(2)-(a)/(x^(2)))*(x+(a)/(x^(3)))dx , put x^(2)-(a)/(x^(2))=t For integral int f(x^(2)+(a)/(x^(2)))*(x-(a)/(x^(3)))dx , put x^(2)+(a)/(x^(2))=t many integrands can be brought into above forms by suitable reductions or transformations . int(5x^(4)+4x^(5))/((x^(5)+x+1)^(2))dx

(i) If f(x) = int_(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t) dt, then prove that f'(x) = 0 AA x in R . (ii) Find the value of x for which function f(x) = int_(-1)^(x) t(e^(t)-1)(t-1)(t-2)^(3)(t-3)^(5)dt has a local minimum.

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

The conic having parametric representation x=sqrt3(1-t^(2)/(1+t^(2))),y=(2t)/(1+t^(2)) is

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-LEVEL 2
  1. If f(x)=int(2+sqrt(x))/((x+1+sqrt(x))^2)dx and f(0)=0 then the valu...

    Text Solution

    |

  2. If f(x)=int((5x^4+4x^5))/((x^5+x+1)^(2))dx and f(0)=0, then the value ...

    Text Solution

    |

  3. For any natural number t,int(x^(3t)+x^(2t)+x^(t))(2x^(2t)+3x^(t)+6)^(1...

    Text Solution

    |

  4. If l^(r )(x) means log log log … x, the log being repeated r times, th...

    Text Solution

    |

  5. The value of inte^(secx)*sec^3x(sin^2x+cosx+sinx+sinxcosx)dx is

    Text Solution

    |

  6. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  7. int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1...

    Text Solution

    |

  8. int (x^4-1)/(x^2)sqrt(x^4+x^2+1) dx equal to (A) sqrt((x^4+x^2+1)/x) +...

    Text Solution

    |

  9. Evaluate: (sin^3x dx)/((cos^4x+3cos^2x+1)tan^(-1)(secx+cosx)

    Text Solution

    |

  10. integrate x^ x (1+logx)dx is equal to

    Text Solution

    |

  11. Evaluate: int1/(xsqrt(1+x^3))\ dx

    Text Solution

    |

  12. Evaluate: int(x^2-1)/((x^2+1)sqrt(x^4+1))dx

    Text Solution

    |

  13. int1/((1+x^4)sqrt(sqrt(1+x^4)-x^2))dx

    Text Solution

    |

  14. int(dx)/((x^2+4x+5)^2) is equal to 1/2[tan^(-1)(x+1)+("x"+2)/("x"^2+...

    Text Solution

    |

  15. int((3x-2)^2)/x^2dx=?

    Text Solution

    |

  16. If f(x)=int(5x^8+7x^6)/((x^2+1+2x^7))dx,(xge0)andf(0)=0, then the valu...

    Text Solution

    |

  17. Evaluate the following Integrals : int (sec x .dx)/(sqrt(sin (x+2A...

    Text Solution

    |

  18. intsqrt(x^6+1).(log(x^6+1)-6logx)/(x^10)dx "is" =-(1)/(6)[(2)/(3)t^(3/...

    Text Solution

    |

  19. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  20. int(x^4(x^10-1))/((x^20+3x^10+1))dx=(1)/(5)tan^(-1)(f(x)+(1)/(f(x)))

    Text Solution

    |