Home
Class 12
MATHS
int((3x-2)^2)/x^2dx=?...

`int((3x-2)^2)/x^2dx`=?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{(3x-2)^2}{x^2} \, dx\), we can follow these steps: ### Step 1: Expand the numerator We start by expanding the expression \((3x - 2)^2\). \[ (3x - 2)^2 = 9x^2 - 12x + 4 \] So, we rewrite the integral: \[ \int \frac{(3x-2)^2}{x^2} \, dx = \int \frac{9x^2 - 12x + 4}{x^2} \, dx \] ### Step 2: Separate the terms in the integral Next, we can separate the integral into three simpler integrals: \[ \int \frac{9x^2}{x^2} \, dx - \int \frac{12x}{x^2} \, dx + \int \frac{4}{x^2} \, dx \] This simplifies to: \[ \int 9 \, dx - \int \frac{12}{x} \, dx + \int 4x^{-2} \, dx \] ### Step 3: Integrate each term Now we can integrate each term separately: 1. \(\int 9 \, dx = 9x\) 2. \(\int \frac{12}{x} \, dx = 12 \ln |x|\) 3. \(\int 4x^{-2} \, dx = 4 \cdot \left(-\frac{1}{x}\right) = -\frac{4}{x}\) ### Step 4: Combine the results Now we combine all the results of the integrals: \[ 9x - 12 \ln |x| - \frac{4}{x} + C \] where \(C\) is the constant of integration. ### Final Answer Thus, the final result of the integral is: \[ \int \frac{(3x-2)^2}{x^2} \, dx = 9x - 12 \ln |x| - \frac{4}{x} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 1|135 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

int((x-2)^3)/x^2dx =?

solve int(3x^2)/(x^2+1)dx

int( x^3)/(x^2-2)dx

int( x^3)/(x^2-3)dx

int( x^2+3)/(x^2+2)dx

int((x^2-2x+3)/x^4)dx

int((x^3+1)(x-2))/(x^2-x-2)dx

int(x^2)/(x^6+x^3-2)dx

int ((x^2-2x+3)/x^4)dx

Evaluate: int(3-2x-2x^2)\ dx

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-LEVEL 2
  1. int (x^4-1)/(x^2)sqrt(x^4+x^2+1) dx equal to (A) sqrt((x^4+x^2+1)/x) +...

    Text Solution

    |

  2. Evaluate: (sin^3x dx)/((cos^4x+3cos^2x+1)tan^(-1)(secx+cosx)

    Text Solution

    |

  3. integrate x^ x (1+logx)dx is equal to

    Text Solution

    |

  4. Evaluate: int1/(xsqrt(1+x^3))\ dx

    Text Solution

    |

  5. Evaluate: int(x^2-1)/((x^2+1)sqrt(x^4+1))dx

    Text Solution

    |

  6. int1/((1+x^4)sqrt(sqrt(1+x^4)-x^2))dx

    Text Solution

    |

  7. int(dx)/((x^2+4x+5)^2) is equal to 1/2[tan^(-1)(x+1)+("x"+2)/("x"^2+...

    Text Solution

    |

  8. int((3x-2)^2)/x^2dx=?

    Text Solution

    |

  9. If f(x)=int(5x^8+7x^6)/((x^2+1+2x^7))dx,(xge0)andf(0)=0, then the valu...

    Text Solution

    |

  10. Evaluate the following Integrals : int (sec x .dx)/(sqrt(sin (x+2A...

    Text Solution

    |

  11. intsqrt(x^6+1).(log(x^6+1)-6logx)/(x^10)dx "is" =-(1)/(6)[(2)/(3)t^(3/...

    Text Solution

    |

  12. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  13. int(x^4(x^10-1))/((x^20+3x^10+1))dx=(1)/(5)tan^(-1)(f(x)+(1)/(f(x)))

    Text Solution

    |

  14. int sqrt((cosx-cos^(3)x)/(1-cos^(3)x))dx is equal to

    Text Solution

    |

  15. Evaluate : int(sinx)/(cos^(9//2)x)dx

    Text Solution

    |

  16. The value of int(cos^4xdx)/(sin^3x(sin^5x+cos^5x)^(3//5))=-(1)/(2)(1+g...

    Text Solution

    |

  17. Evaluate: intsqrt((3-x)/(3+x))sin^(-1)(1/6sqrt(3-x))dx

    Text Solution

    |

  18. Evaluate int(tan(pi/4 -x))/(cos^(2)x sqrt(tan^(3)x+tan^(2) x+ tan x))d...

    Text Solution

    |

  19. Primitive of root(3)((x)/((x^4-1)^(4))) w.r.t. X is :

    Text Solution

    |

  20. The value of int("ln"|x|)/(xsqrt(1+ln|x|)dx equals:

    Text Solution

    |