Home
Class 12
MATHS
intsqrt(x^6+1).(log(x^6+1)-6logx)/(x^10)...

`intsqrt(x^6+1).(log(x^6+1)-6logx)/(x^10)dx "is" =-(1)/(6)[(2)/(3)t^(3//2)logt-(4)/(3)t^(3//2)]+C` where t=

A

`t=(1)/(x^6)`

B

`t=1+(1)/(x^6)`

C

`t=1-(1)/(x^6)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\sqrt{x^6 + 1} \left( \log(x^6 + 1) - 6 \log x \right)}{x^{10}} \, dx, \] we will follow these steps: ### Step 1: Simplify the Logarithmic Expression Using the properties of logarithms, we can rewrite the expression inside the integral. Specifically, we can express \(6 \log x\) as \(\log(x^6)\) to combine the logs: \[ \log(x^6 + 1) - 6 \log x = \log\left(\frac{x^6 + 1}{x^6}\right). \] Thus, we can rewrite the integral as: \[ \int \frac{\sqrt{x^6 + 1} \cdot \log\left(\frac{x^6 + 1}{x^6}\right)}{x^{10}} \, dx. \] ### Step 2: Rewrite the Integral Now, we can express the integral in a more manageable form: \[ \int \frac{\sqrt{x^6 + 1}}{x^{10}} \cdot \log\left(1 + \frac{1}{x^6}\right) \, dx. \] ### Step 3: Substitution Let us make the substitution: \[ t = 1 + \frac{1}{x^6}. \] Then, we differentiate both sides: \[ dt = -\frac{6}{x^7} \, dx \quad \Rightarrow \quad dx = -\frac{x^7}{6} \, dt. \] From our substitution, we can express \(x^6\) in terms of \(t\): \[ x^6 = \frac{1}{t - 1} \quad \Rightarrow \quad x = \left(\frac{1}{t - 1}\right)^{1/6}. \] ### Step 4: Change of Variables in the Integral Now, substituting \(dx\) and \(x\) into the integral gives: \[ \int \sqrt{\frac{1}{t - 1} + 1} \cdot \log(t) \cdot \left(-\frac{\left(\frac{1}{t - 1}\right)^{7/6}}{6}\right) \, dt. \] This simplifies to: \[ -\frac{1}{6} \int \sqrt{t} \cdot \log(t) \cdot dt. \] ### Step 5: Integration by Parts Now we apply integration by parts. Let: - \(u = \log(t)\) and \(dv = \sqrt{t} \, dt\). Then we have: - \(du = \frac{1}{t} \, dt\) and \(v = \frac{2}{3} t^{3/2}\). Using integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we get: \[ -\frac{1}{6} \left( \log(t) \cdot \frac{2}{3} t^{3/2} - \int \frac{2}{3} t^{3/2} \cdot \frac{1}{t} \, dt \right). \] ### Step 6: Simplifying the Integral The integral simplifies to: \[ -\frac{1}{6} \left( \log(t) \cdot \frac{2}{3} t^{3/2} - \frac{2}{3} \int t^{1/2} \, dt \right). \] Integrating \(t^{1/2}\): \[ \int t^{1/2} \, dt = \frac{2}{3} t^{3/2}. \] Putting it all together, we have: \[ -\frac{1}{6} \left( \log(t) \cdot \frac{2}{3} t^{3/2} - \frac{2}{3} \cdot \frac{2}{3} t^{3/2} \right) + C. \] ### Final Step: Substitute Back Finally, substituting back \(t = 1 + \frac{1}{x^6}\): \[ = -\frac{1}{6} \left( \frac{2}{3} (1 + \frac{1}{x^6})^{3/2} \log(1 + \frac{1}{x^6}) - \frac{4}{9} (1 + \frac{1}{x^6})^{3/2} \right) + C. \] ### Conclusion Thus, we find that \[ t = 1 + \frac{1}{x^6}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 1|135 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

int (1+2x^(6))/((1-x^(6))^(3//2))dx is equal to

If int(e^(4x)-1)/(e^(2x))log((e^(2x)+1)/(e^(2x)-1))dx=(t^(2))/(2)logt-(t^(2))/(4)-(u^(2))/(2)logu+(u^(2))/(4)+C, then

If y=(logx)/x ,show\ tha t(d^2y)/(dx^2)=(2logx-3)/(x^3)

int (x^6+2x^2+3x+1) dx

If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3),p rov et h a t(dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6) where -1

Solve: (log)_2(4.3^x-6)-(log)_2(9^x-6)=1.

int( (log x)^(5) )/( x ) dx is equal to a) (log x^(6))/( 6) + C b) ( ( log x )^(6))/( 6) + C c) ((log x )^(6))/( 3x^(2)) + C d) none of these

If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3),prove that (dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6,)

If l=int((2x-3)^(1/2))/((2x-3)^(1/3)+1)dx=3[(1)/(7)(2x-3)^(7/6)-(1)/(5)(2x-3)^(5/6)+(1)/(3)(2x-3)^(1/2)-(2x-3)^(1/6)+g(x)]+c then g(x) is equal to

The series expansion of log[(1 + x)^((1 + x))(1-x)^(1-x)] is (1) 2[(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (2) [(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (3) 2[(x^(2))/(1.2) + (x^(4))/(2.3)+(x^(6))/(3.4)+...] (4) 2[(x^(2))/(1.2) -(x^(4))/(2.3)+(x^(6))/(3.4)-...]

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-LEVEL 2
  1. int (x^4-1)/(x^2)sqrt(x^4+x^2+1) dx equal to (A) sqrt((x^4+x^2+1)/x) +...

    Text Solution

    |

  2. Evaluate: (sin^3x dx)/((cos^4x+3cos^2x+1)tan^(-1)(secx+cosx)

    Text Solution

    |

  3. integrate x^ x (1+logx)dx is equal to

    Text Solution

    |

  4. Evaluate: int1/(xsqrt(1+x^3))\ dx

    Text Solution

    |

  5. Evaluate: int(x^2-1)/((x^2+1)sqrt(x^4+1))dx

    Text Solution

    |

  6. int1/((1+x^4)sqrt(sqrt(1+x^4)-x^2))dx

    Text Solution

    |

  7. int(dx)/((x^2+4x+5)^2) is equal to 1/2[tan^(-1)(x+1)+("x"+2)/("x"^2+...

    Text Solution

    |

  8. int((3x-2)^2)/x^2dx=?

    Text Solution

    |

  9. If f(x)=int(5x^8+7x^6)/((x^2+1+2x^7))dx,(xge0)andf(0)=0, then the valu...

    Text Solution

    |

  10. Evaluate the following Integrals : int (sec x .dx)/(sqrt(sin (x+2A...

    Text Solution

    |

  11. intsqrt(x^6+1).(log(x^6+1)-6logx)/(x^10)dx "is" =-(1)/(6)[(2)/(3)t^(3/...

    Text Solution

    |

  12. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  13. int(x^4(x^10-1))/((x^20+3x^10+1))dx=(1)/(5)tan^(-1)(f(x)+(1)/(f(x)))

    Text Solution

    |

  14. int sqrt((cosx-cos^(3)x)/(1-cos^(3)x))dx is equal to

    Text Solution

    |

  15. Evaluate : int(sinx)/(cos^(9//2)x)dx

    Text Solution

    |

  16. The value of int(cos^4xdx)/(sin^3x(sin^5x+cos^5x)^(3//5))=-(1)/(2)(1+g...

    Text Solution

    |

  17. Evaluate: intsqrt((3-x)/(3+x))sin^(-1)(1/6sqrt(3-x))dx

    Text Solution

    |

  18. Evaluate int(tan(pi/4 -x))/(cos^(2)x sqrt(tan^(3)x+tan^(2) x+ tan x))d...

    Text Solution

    |

  19. Primitive of root(3)((x)/((x^4-1)^(4))) w.r.t. X is :

    Text Solution

    |

  20. The value of int("ln"|x|)/(xsqrt(1+ln|x|)dx equals:

    Text Solution

    |