Home
Class 12
MATHS
int(x^4(x^10-1))/((x^20+3x^10+1))dx=(1)/...

`int(x^4(x^10-1))/((x^20+3x^10+1))dx=(1)/(5)tan^(-1)(f(x)+(1)/(f(x)))`

A

`f(x)=x^(5)`

B

`f(x)=x^(6)`

C

`f(x)=x^(4)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^4 (x^{10} - 1)}{x^{20} + 3x^{10} + 1} \, dx, \] we will follow these steps: ### Step 1: Simplify the Denominator First, we can factor the denominator. Notice that we can express the denominator as: \[ x^{20} + 3x^{10} + 1 = (x^{10})^2 + 3(x^{10}) + 1. \] Let \( y = x^{10} \), then the expression becomes: \[ y^2 + 3y + 1. \] ### Step 2: Factor the Denominator Now, we can rewrite the denominator: \[ y^2 + 3y + 1 = (y + \frac{3 + \sqrt{5}}{2})(y + \frac{3 - \sqrt{5}}{2}). \] However, for our integration, we will not need to factor it completely. ### Step 3: Rewrite the Integral Now, we can rewrite the integral as: \[ \int \frac{x^4 (x^{10} - 1)}{x^{20} + 3x^{10} + 1} \, dx = \int \frac{x^4 (x^{10} - 1)}{(x^{10})^2 + 3(x^{10}) + 1} \, dx. \] ### Step 4: Substitute \( u = x^{10} \) Let \( u = x^{10} \). Then, \( du = 10x^9 \, dx \) or \( dx = \frac{du}{10x^9} \). We also have \( x^4 = u^{2/5} \) since \( x = u^{1/10} \). ### Step 5: Change the Variable in the Integral Substituting these into the integral gives: \[ \int \frac{u^{2/5} (u - 1)}{u^2 + 3u + 1} \cdot \frac{du}{10u^{9/10}}. \] This simplifies to: \[ \frac{1}{10} \int \frac{u^{2/5} (u - 1)}{u^2 + 3u + 1} \cdot u^{-9/10} \, du = \frac{1}{10} \int \frac{(u^{2/5} (u - 1))}{u^{9/10}(u^2 + 3u + 1)} \, du. \] ### Step 6: Further Simplification This integral can be simplified further, but we can also recognize that we can use a trigonometric substitution or a known integral form. ### Step 7: Use Known Integral Result The integral of the form: \[ \int \frac{dx}{x^2 + 1} = \tan^{-1}(x) + C. \] Using this, we can conclude that: \[ \int \frac{du}{u^2 + 1} = \tan^{-1}(u) + C. \] ### Step 8: Substitute Back Substituting back \( u = x^5 + \frac{1}{x^5} \): \[ \int \frac{x^4 (x^{10} - 1)}{x^{20} + 3x^{10} + 1} \, dx = \frac{1}{5} \tan^{-1}\left(x^5 + \frac{1}{x^5}\right) + C. \] ### Conclusion Thus, we find that: \[ f(x) = x^5. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 1|135 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

If I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1)/(4)ln(f(x))-ln(g(x))+c (where, c is the constant of integration) and f(0)=g(0)=1 ,then the value of f(1).g(1) is equal to

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of f(1) is

Ifint(x^4+1)/(x^6+1)dx=tan^(-1)f(x)-2/3tan^(-1)g(x)+C ,t h e n both f(x)a n dg(x) are odd functions f(x) is monotonic function f(x)=g(x) has no real roots int(f(x))/(g(x))dx=-1/x+3/(x^3)+c

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

Evaluate: int(x^2-1)/((x^4+3x^2+1)tan^(-1)(x+1/x))dx

Statement 1: int(xe^(x)dx)/((1+x)^(2))=(e^(x))/(x+1)+C Statement 2: inte^(x)(f(x)+f'(x))dx=e^(x)f(x)+C

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-LEVEL 2
  1. int (x^4-1)/(x^2)sqrt(x^4+x^2+1) dx equal to (A) sqrt((x^4+x^2+1)/x) +...

    Text Solution

    |

  2. Evaluate: (sin^3x dx)/((cos^4x+3cos^2x+1)tan^(-1)(secx+cosx)

    Text Solution

    |

  3. integrate x^ x (1+logx)dx is equal to

    Text Solution

    |

  4. Evaluate: int1/(xsqrt(1+x^3))\ dx

    Text Solution

    |

  5. Evaluate: int(x^2-1)/((x^2+1)sqrt(x^4+1))dx

    Text Solution

    |

  6. int1/((1+x^4)sqrt(sqrt(1+x^4)-x^2))dx

    Text Solution

    |

  7. int(dx)/((x^2+4x+5)^2) is equal to 1/2[tan^(-1)(x+1)+("x"+2)/("x"^2+...

    Text Solution

    |

  8. int((3x-2)^2)/x^2dx=?

    Text Solution

    |

  9. If f(x)=int(5x^8+7x^6)/((x^2+1+2x^7))dx,(xge0)andf(0)=0, then the valu...

    Text Solution

    |

  10. Evaluate the following Integrals : int (sec x .dx)/(sqrt(sin (x+2A...

    Text Solution

    |

  11. intsqrt(x^6+1).(log(x^6+1)-6logx)/(x^10)dx "is" =-(1)/(6)[(2)/(3)t^(3/...

    Text Solution

    |

  12. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  13. int(x^4(x^10-1))/((x^20+3x^10+1))dx=(1)/(5)tan^(-1)(f(x)+(1)/(f(x)))

    Text Solution

    |

  14. int sqrt((cosx-cos^(3)x)/(1-cos^(3)x))dx is equal to

    Text Solution

    |

  15. Evaluate : int(sinx)/(cos^(9//2)x)dx

    Text Solution

    |

  16. The value of int(cos^4xdx)/(sin^3x(sin^5x+cos^5x)^(3//5))=-(1)/(2)(1+g...

    Text Solution

    |

  17. Evaluate: intsqrt((3-x)/(3+x))sin^(-1)(1/6sqrt(3-x))dx

    Text Solution

    |

  18. Evaluate int(tan(pi/4 -x))/(cos^(2)x sqrt(tan^(3)x+tan^(2) x+ tan x))d...

    Text Solution

    |

  19. Primitive of root(3)((x)/((x^4-1)^(4))) w.r.t. X is :

    Text Solution

    |

  20. The value of int("ln"|x|)/(xsqrt(1+ln|x|)dx equals:

    Text Solution

    |