Home
Class 12
MATHS
Primitive of root(3)((x)/((x^4-1)^(4))) ...

Primitive of `root(3)((x)/((x^4-1)^(4)))` w.r.t. X is :

A

(a) `(3)/(4)(1+(1)/(x^4-1))^(1//3)+C`

B

(b) `-(3)/(4)(1+(1)/(x^4-1))^(1//3)+C`

C

(c) `(4)/(3)(1+(1)/(x^4-1))^(1//3)+C`

D

(d) `-(4)/(3)(1+(1)/(x^4-1))^(1//3)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To find the primitive (or integral) of the function \( \frac{\sqrt[3]{x}}{(x^4 - 1)^4} \) with respect to \( x \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form: \[ I = \int \frac{x^{1/3}}{(x^4 - 1)^4} \, dx \] ### Step 2: Multiply and Divide by \( x^5 \) To simplify the integral, we multiply and divide by \( x^5 \): \[ I = \int \frac{x^{1/3} \cdot x^5}{(x^4 - 1)^4 \cdot x^5} \, dx = \int \frac{x^{16/3}}{(x^4 - 1)^4} \cdot \frac{1}{x^5} \, dx \] ### Step 3: Simplify the Expression Now we can simplify the expression: \[ I = \int \frac{x^{16/3}}{(x^4 - 1)^4} \cdot x^{-5} \, dx = \int \frac{x^{16/3 - 5}}{(x^4 - 1)^4} \, dx = \int \frac{x^{1/3}}{(x^4 - 1)^4} \cdot \frac{1}{x^5} \, dx \] ### Step 4: Use Substitution Next, we will use substitution. Let: \[ t = 1 - \frac{1}{x^4} \implies dt = \frac{4}{x^5} \, dx \implies dx = \frac{x^5}{4} dt \] ### Step 5: Change the Integral Substituting \( t \) into the integral gives: \[ I = \int \frac{(1 - t)^4}{(t^4)^{4/3}} \cdot \frac{x^5}{4} dt \] ### Step 6: Simplify the Integral This simplifies to: \[ I = \frac{1}{4} \int (1 - t)^4 t^{-4/3} dt \] ### Step 7: Integrate Now we can integrate: \[ I = \frac{1}{4} \left[ \frac{(1 - t)^5}{5} t^{-4/3} \right] + C \] ### Step 8: Back Substitute Now we substitute back for \( t \): \[ I = \frac{1}{4} \left[ \frac{(1 - (1 - \frac{1}{x^4}))^5}{5} \left(1 - \frac{1}{x^4}\right)^{-4/3} \right] + C \] ### Step 9: Final Expression After simplifying, we get: \[ I = -\frac{3}{4} \left(1 + \frac{1}{x^4 - 1}\right)^{1/3} + C \] ### Conclusion Thus, the primitive of \( \frac{\sqrt[3]{x}}{(x^4 - 1)^4} \) with respect to \( x \) is: \[ I = -\frac{3}{4} \left(1 + \frac{1}{x^4 - 1}\right)^{1/3} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 1|135 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

The derivative of tan^(-1)((3x-x^(3))/(1-3x^(2))) w.r.t.x is

Primitive of (3x^4-1)/(x^4+x+1)^2 w.r.t. x is

Let F(x) be the primitive of (3x+2)/sqrt(x-9) w.r.t.x. If F(10)=60 then the value of F(13)

If the primitive of the function f(x)=(x^(2009))/((1+x^(2))^(1006)) w.r.t. x is equal to 1/n ((x^(2))/(1+x^(2)))^(m)+C , then n/m is equal to .......

Differentiate sqrt(((x-3)(x^2+4))/(3x^2+4x+5)) w.r.t x.

Find the derivative of sqrt(4-x) w.r.t. x using the first principle.

Find the derivative of sqrt(4-x) w.r.t. x using the first principle.

Find the derivative of sqrt(4-x) w.r.t. x using the first principle.

The derivative of f(x)= 3x^2 +2x + 4 w.r.t. x is

The differentiation of function r(x)= (3x + 2)^(3/2) w.r.t x is

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-LEVEL 2
  1. int (x^4-1)/(x^2)sqrt(x^4+x^2+1) dx equal to (A) sqrt((x^4+x^2+1)/x) +...

    Text Solution

    |

  2. Evaluate: (sin^3x dx)/((cos^4x+3cos^2x+1)tan^(-1)(secx+cosx)

    Text Solution

    |

  3. integrate x^ x (1+logx)dx is equal to

    Text Solution

    |

  4. Evaluate: int1/(xsqrt(1+x^3))\ dx

    Text Solution

    |

  5. Evaluate: int(x^2-1)/((x^2+1)sqrt(x^4+1))dx

    Text Solution

    |

  6. int1/((1+x^4)sqrt(sqrt(1+x^4)-x^2))dx

    Text Solution

    |

  7. int(dx)/((x^2+4x+5)^2) is equal to 1/2[tan^(-1)(x+1)+("x"+2)/("x"^2+...

    Text Solution

    |

  8. int((3x-2)^2)/x^2dx=?

    Text Solution

    |

  9. If f(x)=int(5x^8+7x^6)/((x^2+1+2x^7))dx,(xge0)andf(0)=0, then the valu...

    Text Solution

    |

  10. Evaluate the following Integrals : int (sec x .dx)/(sqrt(sin (x+2A...

    Text Solution

    |

  11. intsqrt(x^6+1).(log(x^6+1)-6logx)/(x^10)dx "is" =-(1)/(6)[(2)/(3)t^(3/...

    Text Solution

    |

  12. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  13. int(x^4(x^10-1))/((x^20+3x^10+1))dx=(1)/(5)tan^(-1)(f(x)+(1)/(f(x)))

    Text Solution

    |

  14. int sqrt((cosx-cos^(3)x)/(1-cos^(3)x))dx is equal to

    Text Solution

    |

  15. Evaluate : int(sinx)/(cos^(9//2)x)dx

    Text Solution

    |

  16. The value of int(cos^4xdx)/(sin^3x(sin^5x+cos^5x)^(3//5))=-(1)/(2)(1+g...

    Text Solution

    |

  17. Evaluate: intsqrt((3-x)/(3+x))sin^(-1)(1/6sqrt(3-x))dx

    Text Solution

    |

  18. Evaluate int(tan(pi/4 -x))/(cos^(2)x sqrt(tan^(3)x+tan^(2) x+ tan x))d...

    Text Solution

    |

  19. Primitive of root(3)((x)/((x^4-1)^(4))) w.r.t. X is :

    Text Solution

    |

  20. The value of int("ln"|x|)/(xsqrt(1+ln|x|)dx equals:

    Text Solution

    |