Home
Class 12
MATHS
int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1)...

`int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx` is equal to

A

` 2 sqrt ( 2 - (2)/(x ^ 2 ) + (1)/(x ^4 ) ) + c `

B

` 2 sqrt ( 2 + (2)/(x^2 ) + (1)/(x ^ 4 )) + c `

C

` (1)/(2) sqrt( 2 - (2)/(x ^ 2 ) + (1)/(x ^ 4 ) ) + c `

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^2 - 1}{x^3 \sqrt{2x^4 - 2x^2 + 1}} \, dx, \] we will follow these steps: ### Step 1: Rewrite the integral We start by rewriting the integral as follows: \[ \int \frac{x^2 - 1}{x^3 \sqrt{2x^4 - 2x^2 + 1}} \, dx = \int \frac{x^2}{x^3 \sqrt{2x^4 - 2x^2 + 1}} \, dx - \int \frac{1}{x^3 \sqrt{2x^4 - 2x^2 + 1}} \, dx. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C

Evaluate: int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx

int (x^2-2)/(x^3 sqrt(x^2-1)) dx is equal to

int(x^2-1)/(xsqrt(x^4+3x^2+1) dx is equal to

int((x^(2)-1))/((x^(2)+1)sqrt(x^(4)+1))dx is equal to

int((x^4-1)dx)/(x^2sqrt(x^4+x^2+1))

int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx is equal to

The value if int(x^(2)-1)/((x^(2)+1)(sqrt(x^(4)+1)))dx equal to (1)/(sqrt(2))sec^(-1)(f(x))+c , then f(x) is

int(1-x^(2))/((1+x^(2))sqrt(1+x^(4)))dx is equal to

int(2x^(2)(1+2x^(2)))/((1+x^(2)+x^(4))^(2))dx is equal to