Home
Class 12
MATHS
For any natural m, evaluate int(x^(3m)...

For any natural m, evaluate
`int(x^(3m)+x^(2m)+x^(m))(2x^(2m)+3x^(m)+6)^(1//m)dx, x gt 0`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

For any natural number m, evaulate, int(x^(3m)+x^(2m)+x^(m))(2x^(2m)+3x^9m)+6^(t//m)dx, x gt0 int (x^(2)-1)/(x^(3)sqrt(2x^(4)-2x^(2)+1) dx is equal to:

Evaluate: for m in N , intx^(3m)+x^(2n)+x^m)(2x^(2m)+3x^m+6)^(1/m)dx ,x >0

Evaluate: for m in N , intx^(3m)+x^(2n)+x^m)(2x^(2m)+3x^m+6)^(1/m)dx ,x >0

int(x^(7m)+x^(2m)+x^m)(2x^(6m)+7x^m+14)^(1/m)dx

Evaluate: int(x/m+m/x+x^m+m^x)\ dx

Prove that : int_(0)^(pi) sin^(2m) x. cos^(2m+1) x dx=0

If m, n in N , then int_(0)^(pi//2)((sin^(m)x)^(1/n))/((sin^(m)x)^(1/n)+(cos^(m)x)^(1/n))dx is equal to

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

If m is a non-zero number and int (x^(5m-1)+2x^(4m-1))/(x^(2m)+x^m+1)^3 dx=f(x)+c , then f(x) is:

The number of positive integral values of m , m le 16 for which the equation (x^(2) +x+1) ^(2) - (m-3)(x^(2) +x+1) +m=0, has 4 distinct real root is: