Home
Class 12
MATHS
If f(x) is the integral of (2 sin x-sin ...

If f(x) is the integral of `(2 sin x-sin 2 x)/(x^(3)), "where x" ne 0, "then find" underset(x rarr 0)("lim")f'(x)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit as \( x \) approaches 0 of the derivative of the function \( f(x) \), which is defined as the integral of \( \frac{2 \sin x - \sin 2x}{x^3} \). Let's break down the solution step by step. ### Step 1: Define the function \( f(x) \) The function \( f(x) \) is given by: \[ f(x) = \int \frac{2 \sin x - \sin 2x}{x^3} \, dx \] ### Step 2: Differentiate \( f(x) \) to find \( f'(x) \) Using the Fundamental Theorem of Calculus, we can differentiate \( f(x) \): \[ f'(x) = \frac{2 \sin x - \sin 2x}{x^3} \] ### Step 3: Substitute \( \sin 2x \) using the double angle formula Recall that \( \sin 2x = 2 \sin x \cos x \). Thus, we can rewrite \( f'(x) \): \[ f'(x) = \frac{2 \sin x - 2 \sin x \cos x}{x^3} = \frac{2 \sin x (1 - \cos x)}{x^3} \] ### Step 4: Find the limit as \( x \) approaches 0 We need to evaluate: \[ \lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{2 \sin x (1 - \cos x)}{x^3} \] ### Step 5: Break the limit into parts We can separate the limit: \[ \lim_{x \to 0} f'(x) = 2 \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{(1 - \cos x)}{x^2} \] ### Step 6: Evaluate the limits 1. We know that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] 2. For the second limit, we use the fact that: \[ \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \] (This can be derived from the Taylor series expansion of \( \cos x \) or using L'Hôpital's rule.) ### Step 7: Combine the results Now substituting back into our limit: \[ \lim_{x \to 0} f'(x) = 2 \cdot 1 \cdot \frac{1}{2} = 1 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} f'(x) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

f(x) is the integral of (2sinx-sin2x)/(x^3),x!=0. Find lim_(x->0)f^(prime)(x)[w h e r ef^(prime)(x)=(df)/(dx)]

1. lim_(x rarr0)(sin^(-1)x-sin x)/(x^(3))

lim_(x rarr0)(x-sin x)/(tan^(3)x)

3. lim_(x rarr0)(sin x sin^(-1)x)/(x^(2))

f(x)= |{:(cos x,,x,,1),(2sin x ,,x^(2),,2x),(tanx ,, x,,1):}| then find the value of underset(xto 0)(" lim ") (f(x))/(x)

lim_(x rarr0)(x-sin x)/(tan^(2)x)

Disuss the continutiy of f(x) ={:{((sin^2 x)/(x^2)", "x ne 0),(" "0", " x= 0):}, at x=0

Statement-1 : lim_(x to 0-) ("sin"[x])/([x]) = "sin" [x] != 0 , Where [x] is the integral part of x. Statement-2 : lim_(x to 0+) ("sin"[x])/([x]) != 0 , where [x] the integral part of x.

lim_(x rarr0)(x-sin x)/(tan^(2)x) .

(i) lim_(x rarr0)(x-sin x)/(tan^(3)x)