Home
Class 12
PHYSICS
A particle is moving along x-axis. The p...

A particle is moving along x-axis. The position of the particle at any instant is given by ` x= a+bt^(2) ` where ,a= 6 m and b= 3.5 `ms^(-2) ` 't' is measured in second .Find
(i) the velocity of the particle at 1s and
(ii) the average velocity between 3s and 6s

Text Solution

Verified by Experts

Average velocity `=("displacement of the particle")/("time taken") =(x(t=6x)-(t=3s))/((6-3)s) =((a+36b)-(a+9b))/(3)`
`=(27b)/(3) =(27xx3.5)/(3) =31.5" ms"^(-1)`
Promotional Banner

Topper's Solved these Questions

  • Motion in Straight Line

    VMC MODULES ENGLISH|Exercise SOLVED EXAMPLES|20 Videos
  • Motion in Straight Line

    VMC MODULES ENGLISH|Exercise PRACTICE EXERCISE|80 Videos
  • MOTION IN A STRAIGHT LINE & PLANE

    VMC MODULES ENGLISH|Exercise IMPECCABLE|52 Videos
  • Motion in Two Dimensions

    VMC MODULES ENGLISH|Exercise MCQ|2 Videos

Similar Questions

Explore conceptually related problems

A particle is moving along x-axis. The position of the particle at any instant is given by x = a + bt^(2)," where, "a = 6m and b =3.5 ms^(-2) , t is measurved in seconds. Find. Velocity of the particle at t = 0 and t = 3s

The position of and object moving along x-axis is given by x=a +bt^(2) , where a=8.5 m and b=2.5 ms^(-2) and (t) is measured in seconds. What is the velocity at t=0 s and t=2.0 s? What is the average velocity between t=2.0s and t=4.0 s ?

The position of an object moving along x-axis is given by x=a +bt^(2) , where a=8.5 m and b=2.5 ms^(-2) and (t) is measured in seconds. What is the velocity at t=1= 0 s and t=2.0 s? What is the average velocity between t=2.0s and t=4.0 s ? a) 5 m/s b) 10 m/s c) 15 m/s d) 20 m/s

A particle moves along x -axis. The position of the particle at time t is given as x=t^(3)-9t^(2)+24t+1 . Find the distance traveled in first 5 seconds.

Position of a particle at any instant is given by x = 3t^(2)+1 , where x is in m and t in sec. Its average velocity in the time interval t = 2 sec to t = 3 sec will be :

The position (in meters) of a particle moving on the x-axis is given by: x=2+9t +3t^(2) -t^(3) , where t is time in seconds . The distance travelled by the particle between t= 1s and t= 4s is m.

A particle is moving in a straight line. Its displacement at any instant t is given by x = 10 t+ 15 t^(3) , where x is in meters and t is in seconds. Find (i) the average acceleration in the intervasl t = 0 to t = 2s and (ii) instantaneous acceleration at t = 2 s.

The position-time relation of a particle moving along the x-axis is given by x=a-bt+ct^(2) where a, b and c are positive numbers. The velocity-time graph of the particle is

The position of a particle is given by vec r =(8 t hati +3t^(2) hatj +5 hatk) m where t is measured in second and vec r in meter. Calculate, direction of the velocity at t = 1 s

The position of a particle is given by vec r =(8 t hati +3t^(2) +5 hatk) m where t is measured in second and vec r in meter. Calculate, the magnitude of velocity at t = 5 s,