Home
Class 12
PHYSICS
A long solenoid is formed by winding 40 ...

A long solenoid is formed by winding 40` turns//cm `The current necessary for 40 mT inside the solenoid will be approximately equal to

A

8A

B

4A

C

2A

D

1A

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the current necessary to produce a magnetic field of 40 mT inside a long solenoid with 40 turns per centimeter, we can follow these steps: ### Step-by-Step Solution: 1. **Understand the formula for the magnetic field inside a solenoid**: The magnetic field \( B \) inside a long solenoid is given by the formula: \[ B = \mu_0 n I \] where: - \( B \) is the magnetic field, - \( \mu_0 \) is the permeability of free space (\( 4\pi \times 10^{-7} \, \text{T m/A} \)), - \( n \) is the number of turns per unit length (in turns/meter), - \( I \) is the current in amperes. 2. **Convert the number of turns per centimeter to turns per meter**: Given that the solenoid has 40 turns per centimeter: \[ n = 40 \, \text{turns/cm} = 40 \times 100 = 4000 \, \text{turns/m} \] 3. **Convert the magnetic field from milliTesla to Tesla**: The magnetic field \( B \) is given as 40 mT: \[ B = 40 \, \text{mT} = 40 \times 10^{-3} \, \text{T} \] 4. **Substitute the known values into the formula**: Now we can substitute \( B \), \( \mu_0 \), and \( n \) into the formula: \[ 40 \times 10^{-3} = (4\pi \times 10^{-7}) \times (4000) \times I \] 5. **Rearranging the formula to solve for \( I \)**: Rearranging gives: \[ I = \frac{40 \times 10^{-3}}{4\pi \times 10^{-7} \times 4000} \] 6. **Calculate the denominator**: First, calculate \( 4\pi \): \[ 4\pi \approx 12.56 \] Then calculate: \[ 4\pi \times 10^{-7} \times 4000 = 12.56 \times 10^{-7} \times 4000 = 5.024 \times 10^{-3} \] 7. **Calculate the current \( I \)**: Now substitute back into the equation for \( I \): \[ I = \frac{40 \times 10^{-3}}{5.024 \times 10^{-3}} \approx 7.95 \, \text{A} \] Rounding to the nearest whole number gives: \[ I \approx 8 \, \text{A} \] ### Final Answer: The current necessary for 40 mT inside the solenoid will be approximately equal to **8 A**. ---
Promotional Banner

Topper's Solved these Questions

  • MOVING CHARGES & MAGNETISM

    VMC MODULES ENGLISH|Exercise IN-CHAPTER EXERCISE-D|12 Videos
  • MOVING CHARGES & MAGNETISM

    VMC MODULES ENGLISH|Exercise IN-CHAPTER EXERCISE-E|10 Videos
  • MOVING CHARGES & MAGNETISM

    VMC MODULES ENGLISH|Exercise IN-CHAPTER EXERCISE-B|10 Videos
  • Motion in Two Dimensions

    VMC MODULES ENGLISH|Exercise MCQ|2 Videos
  • PROPERTIES OF MATTER

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive) Level - 2 (MATRIX MATCH TYPE)|1 Videos

Similar Questions

Explore conceptually related problems

A long solenoid is formed by winding 20 turns cm^-1 . What current is necessary to produce a magnetic field of 20 mT inside the solenoid?

The B-H curve for a ferromagnet is shown in the figure. The ferromagnet is placed inside a long solenoid with 1000 turns/cm. The current that should be passed in the solenoid to demagnetise the ferromagnet completely is :

A bar magnet has a coercivity of (4000 Am^-1) It is desired to demagnetize by inserting it inside a solenoid 10 cm long and having 500 turns. The current which should be carried by solenoid is Consider ideal solenoid)

A solenoid consists of 100 turns of wire and has a length of 10 cm. The magnetic field inside the solenoid when it carries a current of 0.5 A will be :

An iron rod of volume 10^(-4)m^(3) and relative permeability 1000 is placed inside a long solenoid wound with 5 "turns"//"cm" . If a current of 0.5 A is passed through the solenoid, then the magnetic moment of the rod is

An iron rod of volume 10^(-4)m^(3) and relative permeability 1000 is placed inside a long solenoid wound with 5 turns"/"cm . If a current of 0.5 A is passed through the solenoid, then the magnetic moment of the rod is

A tightly- wound , long solenoid carries a current of 2.00 A. An electron is found to execute a uniform circular motion inside the solenoid with a frequency of (1.00 xx 10^8 rev s^-1 ). Find the number of turns per metre in the solenoid.

A solenoid 50 cm long has 4 layers of windings of 350 turns each. If the current carried is 6A. Find the magnetic field at the centre of the solenoid

A long solenoid of 50 cm length having 100 turns carries a current of 2.5A. The magnetic field at centre of solenoid is:

A tightly- wound, long solenoid is kept with its axis parallel to a large metal sheet carrying a surface current. The surgace current through a width dl of the sheet is Kdl and the number of turns per unit length of the solenoid is n. The magnetic field near the centre of the solenoid is found to be zero. (a) find the current in the solenoid. (b) If the solenoid is rotated to make its axis perpendicular to the metal sheet, what would be the magnitude of the magnetic field near its centre?