Home
Class 12
MATHS
For the curve y=3 sin theta * cos th...

For the curve
`y=3 sin theta * cos theta , x =e^(theta) sin theta , 0 le theta le pi` , the tangent is parallel to x-axis when ` theta ` is

A

`(3pi)/(4)`

B

`(pi)/(4)`

C

`(pi)/(2)`

D

`(pi)/(6)`

Text Solution

Verified by Experts

The correct Answer is:
B

`y=(3)/(2)sin2theta`
`x=e^(theta)sintheta`
`(dy)/(dx)=(3cos2theta)/(e^(theta)(costheta+sintheta))=(3)/(e^(theta))(costheta-sintheta)`
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • MOCK TEST 10

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

For the curve y=3sinthetacostheta, x=e^(theta)sintheta, 0lt=thetalt=pi, the tangent is parallel to x-axis when theta is :

Solve cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi

Prove that : sin theta cos^3 theta - cos theta sin^3 theta = 1/4 sin4theta .

If 6sin^(2)theta - sin theta = 1 and 0 le theta le pi , what is the value of sin theta ?

Solve sin 3 theta + sin theta = sin 2 theta, 0 le theta le 2pi. Given the general solution.

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

sin^(3)theta + sin theta - sin theta cos^(2)theta =

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

if x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta , then dy/dx is

If x = 3 cos theta - 2 cos^3 theta,y = 3 sin theta - 2 sin^3 theta , then dy/dx is