Home
Class 12
MATHS
Find the area bounded by the curve y=(x-...

Find the area bounded by the curve `y=(x-1)(x-2)(x-3)` lying between the ordinates `x=0a n dx=3.`

A

`(9)/(4)`

B

`(11)/(4)`

C

`(11)/(2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`int_(0)^(3)|(x-1)(x-2)(x-3)|dx=int_(0)^(3)|x^(3)-6x^(2)+11x-6|dx`

`A=-int_(0)^(1)(x^(3)-6x^(2)+11x-6)dx+int_(1)^(2)(x^(3)-6x^(2)+11x-6)dx-int_(2)^(3)(x^(3)-6x^(2)+11x-6)dx`
`A=(11)/(4)`
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • MOCK TEST 10

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

Find the area bounded by the curve y=(x-1)(x-2)(x-3) and X-axis lying between ordinates x=0 and x=3

The area bounded by the curve y=(x-1)(x-2)(x-3) and x -axis lying between the ordinates x = 0 and x = 4 is

The area bounded by the curves y=cosx and y=sinx between the ordinates x=0 and x=(3pi)/2 is

Find the area bounded by the curve y=4x-x^2 , the x-axis and the ordinates x=1 and x=3 .

Find the area bounded by the curve y=cos x ,\ x-axis and the ordinates x=0\ a n d\ x=2pidot

Find the area bounded by the curves x+2|y|=1 and x=0 .

Find the area bounded by the curves x+2|y|=1 and x=0 .

Find the area bounded by the curves y=x^(3)-x and y=x^(2)+x.

Find the area bounded by the curves y=6x-x^2a n dy=x^2-2xdot

The area of the region bounded by the curve y=(x^(2)+2)^(2)+2x between the ordinates x = 0, x = 2 is