Home
Class 12
MATHS
If the function f(x)={{:(ax+b, -ooltxle2...

If the function `f(x)={{:(ax+b, -ooltxle2),(x^(2)-5x+6,2ltxlt3),(px^(2)+qx+1,3lexleoo):}` is differentiable in `(-oo,oo)`, then :

A

`a=-1,p=-(4)/(9)`

B

`b=2,q=(5)/(3)`

C

a=1, b=2

D

`a=-1, q=-(5)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous and differentiable at the points where the piecewise function changes, specifically at \( x = 2 \) and \( x = 3 \). ### Step 1: Ensure Continuity at \( x = 2 \) The function is defined as follows: - \( f(x) = ax + b \) for \( x < 2 \) - \( f(x) = x^2 - 5x + 6 \) for \( 2 < x < 3 \) To ensure continuity at \( x = 2 \), we need: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = f(2) \] Calculating the left-hand limit (LHL): \[ \lim_{x \to 2^-} f(x) = a(2) + b = 2a + b \] Calculating the right-hand limit (RHL): \[ \lim_{x \to 2^+} f(x) = 2^2 - 5(2) + 6 = 4 - 10 + 6 = 0 \] Setting the limits equal for continuity: \[ 2a + b = 0 \quad \text{(1)} \] ### Step 2: Ensure Continuity at \( x = 3 \) Next, we check continuity at \( x = 3 \): - \( f(x) = x^2 - 5x + 6 \) for \( 2 < x < 3 \) - \( f(x) = px^2 + qx + 1 \) for \( x \geq 3 \) Calculating the left-hand limit (LHL): \[ \lim_{x \to 3^-} f(x) = 3^2 - 5(3) + 6 = 9 - 15 + 6 = 0 \] Calculating the right-hand limit (RHL): \[ \lim_{x \to 3^+} f(x) = p(3^2) + q(3) + 1 = 9p + 3q + 1 \] Setting the limits equal for continuity: \[ 9p + 3q + 1 = 0 \quad \text{(2)} \] ### Step 3: Ensure Differentiability at \( x = 2 \) For differentiability at \( x = 2 \), we need: \[ f'(2^-) = f'(2^+) \] Calculating the left-hand derivative: \[ f'(x) = a \quad \text{for } x < 2 \] Calculating the right-hand derivative: \[ f'(x) = 2x - 5 \quad \text{for } 2 < x < 3 \] \[ f'(2^+) = 2(2) - 5 = 4 - 5 = -1 \] Setting the derivatives equal: \[ a = -1 \quad \text{(3)} \] ### Step 4: Substitute \( a \) into Equation (1) Substituting \( a = -1 \) into equation (1): \[ 2(-1) + b = 0 \implies -2 + b = 0 \implies b = 2 \] ### Step 5: Ensure Differentiability at \( x = 3 \) For differentiability at \( x = 3 \): \[ f'(3^-) = f'(3^+) \] Calculating the left-hand derivative: \[ f'(3^-) = 2(3) - 5 = 6 - 5 = 1 \] Calculating the right-hand derivative: \[ f'(x) = 2px + q \quad \text{for } x \geq 3 \] \[ f'(3^+) = 2p(3) + q = 6p + q \] Setting the derivatives equal: \[ 1 = 6p + q \quad \text{(4)} \] ### Step 6: Substitute \( q \) from Equation (2) From equation (2), we have: \[ 9p + 3q + 1 = 0 \implies 3q = -9p - 1 \implies q = -3p - \frac{1}{3} \] Substituting \( q \) into equation (4): \[ 1 = 6p + (-3p - \frac{1}{3}) \implies 1 = 3p - \frac{1}{3} \] \[ 3p = 1 + \frac{1}{3} = \frac{4}{3} \implies p = \frac{4}{9} \] ### Step 7: Substitute \( p \) into \( q \) Now substituting \( p = \frac{4}{9} \) into \( q = -3p - \frac{1}{3} \): \[ q = -3 \left(\frac{4}{9}\right) - \frac{1}{3} = -\frac{12}{9} - \frac{3}{9} = -\frac{15}{9} = -\frac{5}{3} \] ### Final Values Thus, we have: - \( a = -1 \) - \( b = 2 \) - \( p = \frac{4}{9} \) - \( q = -\frac{5}{3} \) ### Conclusion The values of \( a, b, p, \) and \( q \) are: - \( a = -1 \) - \( b = 2 \) - \( p = \frac{4}{9} \) - \( q = -\frac{5}{3} \)

To solve the problem, we need to ensure that the function \( f(x) \) is continuous and differentiable at the points where the piecewise function changes, specifically at \( x = 2 \) and \( x = 3 \). ### Step 1: Ensure Continuity at \( x = 2 \) The function is defined as follows: - \( f(x) = ax + b \) for \( x < 2 \) - \( f(x) = x^2 - 5x + 6 \) for \( 2 < x < 3 \) ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • MOCK TEST 10

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(5x-4",",0ltxle1),(4x^(2)+3ax",",1ltxlt2):}

The function f(x) = "max"{(1-x), (1+x), 2}, x in (-oo, oo) is

If the complete set of value(s) of a for which the function f (x) =(ax^(3))/(3)+(a+2) x^(2) +(a-1) x+2 possess a negative point of inflection is (-oo, alpha)uu(beta,oo)" then " |alpha|+|beta| is ___________ .

Let f:RtoR is given by f(x)={(p+qx+x^(2),xlt2),(2px+3qx^(2),xge2):} then:

Let a , b in R,(a in 0) . If the funtion f defined as f(x)={{:(,(2x^(2))/(a),0 le x lt 1),(,a,1 le x lt sqrt2),(,(2b^(2)-4b)/(x^(3)),sqrt2lt x lt oo):} is a continous in [0,oo) . Then, (a,b)=

The value of a for which the function f(x) = {[5x-4,if 0ltxle1],[4x^2 + 3ax , if 1ltxlt2]} is continous at every point of its domain is

The value of a for which the function f(x)=(4a-3)(x+log5)+2(a-7)cot(x/2)sin^2(x/2) does not possess critical points is (a) (-oo,-4/3) (b) (-oo,-1) (c) [1,oo) (d) (2,oo)

The domain of definition of the function f(x)=sqrt((x-2)/(x+2))+sqrt((1-x)/(1+x)) is a. (-oo,-2]uu[2,oo) b. [-1,1] c. varphi d. none of these

lim_(x to oo) ((x^(2)+ 5x+3)/(x^(2)+x+3))^(x) is equal to

Let f be the function f(x)=cosx-(1-(x^2)/2)dot Then (a) f(x) is an increasing function in (0,oo) (b) f(x) is a decreasing function in (-oo,oo) (c) f(x) is an increasing function in (-oo,oo) (d) f(x) is a decreasing function in (-oo,0)