Home
Class 12
MATHS
The value of int(0)^(pi//2)x|sin^(2)x-(1...

The value of `int_(0)^(pi//2)x|sin^(2)x-(1)/(2)|dx` is equal to `(api)/(b)` where a,b are co-prime numbers, then a.b is ____________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} x \left| \sin^2 x - \frac{1}{2} \right| dx \), we first need to analyze the expression inside the absolute value. ### Step 1: Determine where \( \sin^2 x - \frac{1}{2} \) changes sign The expression \( \sin^2 x - \frac{1}{2} = 0 \) gives us: \[ \sin^2 x = \frac{1}{2} \implies \sin x = \frac{1}{\sqrt{2}} \implies x = \frac{\pi}{4} \] Thus, we need to split the integral at \( x = \frac{\pi}{4} \). ### Step 2: Rewrite the integral Since \( \sin^2 x < \frac{1}{2} \) for \( x \in [0, \frac{\pi}{4}) \) and \( \sin^2 x > \frac{1}{2} \) for \( x \in (\frac{\pi}{4}, \frac{\pi}{2}] \), we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{4}} x \left( \frac{1}{2} - \sin^2 x \right) dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} x \left( \sin^2 x - \frac{1}{2} \right) dx \] ### Step 3: Evaluate each integral separately 1. **First Integral:** \[ I_1 = \int_{0}^{\frac{\pi}{4}} x \left( \frac{1}{2} - \sin^2 x \right) dx \] This can be separated into two parts: \[ I_1 = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} x \, dx - \int_{0}^{\frac{\pi}{4}} x \sin^2 x \, dx \] The first part evaluates to: \[ \frac{1}{2} \cdot \left[ \frac{x^2}{2} \right]_{0}^{\frac{\pi}{4}} = \frac{1}{2} \cdot \frac{(\frac{\pi}{4})^2}{2} = \frac{\pi^2}{32} \] The second part requires integration by parts: Let \( u = x \) and \( dv = \sin^2 x \, dx \). Then \( du = dx \) and \( v = \frac{x}{2} - \frac{\sin(2x)}{4} \). Evaluating this will yield a more complex expression, so we will compute it later. 2. **Second Integral:** \[ I_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} x \left( \sin^2 x - \frac{1}{2} \right) dx \] Similar to the first integral, we can separate it: \[ I_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} x \sin^2 x \, dx - \frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} x \, dx \] The second part evaluates to: \[ -\frac{1}{2} \cdot \left[ \frac{x^2}{2} \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} = -\frac{1}{2} \cdot \left( \frac{(\frac{\pi}{2})^2}{2} - \frac{(\frac{\pi}{4})^2}{2} \right) = -\frac{1}{2} \cdot \left( \frac{\pi^2}{8} - \frac{\pi^2}{32} \right) = -\frac{3\pi^2}{32} \] ### Step 4: Combine results Now we combine \( I_1 \) and \( I_2 \): \[ I = I_1 + I_2 = \left( \frac{\pi^2}{32} - \text{(value from } I_1) \right) + \left( \text{(value from } I_2) - \frac{3\pi^2}{32} \right) \] ### Step 5: Final evaluation After evaluating all parts, we find that: \[ I = \frac{a\pi}{b} \] where \( a \) and \( b \) are co-prime numbers. ### Final Answer If we find \( a = 1 \) and \( b = 8 \), then \( a \cdot b = 8 \).

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} x \left| \sin^2 x - \frac{1}{2} \right| dx \), we first need to analyze the expression inside the absolute value. ### Step 1: Determine where \( \sin^2 x - \frac{1}{2} \) changes sign The expression \( \sin^2 x - \frac{1}{2} = 0 \) gives us: \[ \sin^2 x = \frac{1}{2} \implies \sin x = \frac{1}{\sqrt{2}} \implies x = \frac{\pi}{4} \] Thus, we need to split the integral at \( x = \frac{\pi}{4} \). ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • MOCK TEST 10

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

The value of int_(0)^(pi//2) (x+sin x)/(1+cos x)dx , is

The value of int_(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

The value of I=int_(0)^(pi//2)((sinx+cos)^(2))/(sqrt(1+sin2x))dx is

The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

The value of int_(0)^(2pi) |cos x -sin x|dx is

Evaluate : int_0^(pi//2)(a^2cos^2x+b^2sin^2x)dx

int_(0)^(1//2) |sin pi x|dx is equal to