Home
Class 12
MATHS
lim(xto0)(ae^(2x)-bcosx+c)/(xsinx)=1 the...

`lim_(xto0)(ae^(2x)-bcosx+c)/(xsinx)=1` then `a+b+c` is equal to .__________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 0} \frac{ae^{2x} - b\cos x + c}{x \sin x} = 1 \), we will follow these steps: ### Step 1: Rewrite the limit We can rewrite the limit as: \[ \lim_{x \to 0} \frac{ae^{2x} - b\cos x + c}{x \sin x} = \lim_{x \to 0} \frac{ae^{2x} - b\cos x + c}{x^2} \cdot \frac{x^2}{\sin x} \] Since \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \), we have: \[ \lim_{x \to 0} \frac{x^2}{\sin x} = 0 \] Thus, we need to focus on the limit of the numerator. ### Step 2: Expand the functions using Taylor series Using Taylor series expansions around \( x = 0 \): - \( e^{2x} \approx 1 + 2x + \frac{(2x)^2}{2} = 1 + 2x + 2x^2 \) - \( \cos x \approx 1 - \frac{x^2}{2} \) Substituting these expansions into the limit gives: \[ ae^{2x} \approx a(1 + 2x + 2x^2) = a + 2ax + 2ax^2 \] \[ -b\cos x \approx -b(1 - \frac{x^2}{2}) = -b + \frac{bx^2}{2} \] Thus, the numerator becomes: \[ ae^{2x} - b\cos x + c \approx (a - b + c) + (2a)x + \left(2a + \frac{b}{2}\right)x^2 \] ### Step 3: Combine terms Now, we combine the terms: \[ \text{Numerator} \approx (a - b + c) + (2a)x + \left(2a + \frac{b}{2}\right)x^2 \] ### Step 4: Set the limit equal to 1 For the limit to equal 1, the constant term in the numerator must be 0 (since the denominator approaches 0), and the coefficient of \( x^2 \) must equal 1: 1. \( a - b + c = 0 \) 2. \( 2a + \frac{b}{2} = 1 \) ### Step 5: Solve the equations From the first equation: \[ c = b - a \] Substituting \( c \) into the second equation: \[ 2a + \frac{b}{2} = 1 \] Now substituting \( c = b - a \): \[ 2a + \frac{b}{2} = 1 \] ### Step 6: Solve for \( a \) and \( b \) From \( 2a + \frac{b}{2} = 1 \): Multiply through by 2: \[ 4a + b = 2 \quad \text{(Equation 1)} \] Now, substituting \( c = b - a \) into the first equation: \[ a - b + (b - a) = 0 \Rightarrow 0 = 0 \quad \text{(True)} \] ### Step 7: Substitute values From Equation 1: \[ b = 2 - 4a \] Substituting \( b \) into \( c = b - a \): \[ c = (2 - 4a) - a = 2 - 5a \] ### Step 8: Find \( a + b + c \) Now, we can find \( a + b + c \): \[ a + b + c = a + (2 - 4a) + (2 - 5a) = 4 - 8a \] ### Step 9: Set \( a = 0 \) (from the limit condition) From the limit condition, we find \( a = 0 \): \[ a + b + c = 4 - 8(0) = 4 \] Thus, the final answer is: \[ \boxed{4} \]

To solve the limit problem \( \lim_{x \to 0} \frac{ae^{2x} - b\cos x + c}{x \sin x} = 1 \), we will follow these steps: ### Step 1: Rewrite the limit We can rewrite the limit as: \[ \lim_{x \to 0} \frac{ae^{2x} - b\cos x + c}{x \sin x} = \lim_{x \to 0} \frac{ae^{2x} - b\cos x + c}{x^2} \cdot \frac{x^2}{\sin x} \] Since \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \), we have: ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • MOCK TEST 10

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)((e^(x)-1)/x)^(1//x)

If lim_(xrarr0)(ae^x-b cos x + ce^(-x))/(xsinx )=2 ,then a+b+c=

If f(x)=cos^(-1)(4x^3-3x)and lim_(xto1/2+)f'(x)=a and lim_(xto1/2-)f'(x)=b then a + b+ 3 is equal to ____

If lim_(xto0) (ae^(x)-b)/(x) =2, then find the values of a and b.

lim_(xto0) ((1-cos2x)(3+cosx))/(xtan4x) is equal to

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

Evaluate : lim_(xto0) (a^(x)-b^(x))/x

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

Let alpha,betainR be such that lim_(xto0) (x^(2)sin(betax))/(alphax-sinx)=1 . Then 6(alpha+beta) equals___________.

Evaluate lim_(xto0)(ae^(x)-b)/x=2 . Find a and b