Home
Class 12
MATHS
If 1+x^(4)+x^(5)=sum(i=0)^(5)a(i)(1+x)^(...

If `1+x^(4)+x^(5)=sum_(i=0)^(5)a_(i)(1+x)^(i)` for all `x""inR`, then `a_(4)` is equal to ________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(1 + x^4 + x^5 = \sum_{i=0}^{5} a_i (1 + x)^i\) for \(a_4\), we will follow these steps: ### Step 1: Expand the right-hand side The right-hand side can be expanded using the binomial theorem: \[ (1 + x)^i = \sum_{k=0}^{i} \binom{i}{k} x^k \] Thus, we can write: \[ \sum_{i=0}^{5} a_i (1 + x)^i = a_0 + a_1(1 + x) + a_2(1 + x)^2 + a_3(1 + x)^3 + a_4(1 + x)^4 + a_5(1 + x)^5 \] ### Step 2: Write out the terms Now, we can write out the terms for \(i = 0\) to \(5\): - For \(i = 0\): \(a_0\) - For \(i = 1\): \(a_1(1 + x) = a_1 + a_1 x\) - For \(i = 2\): \(a_2(1 + x)^2 = a_2(1 + 2x + x^2)\) - For \(i = 3\): \(a_3(1 + x)^3 = a_3(1 + 3x + 3x^2 + x^3)\) - For \(i = 4\): \(a_4(1 + x)^4 = a_4(1 + 4x + 6x^2 + 4x^3 + x^4)\) - For \(i = 5\): \(a_5(1 + x)^5 = a_5(1 + 5x + 10x^2 + 10x^3 + 5x^4 + x^5)\) ### Step 3: Combine all terms Combining all these, we have: \[ a_0 + (a_1 + a_2 + a_3 + a_4 + a_5) + (a_1 + 2a_2 + 3a_3 + 4a_4 + 5a_5)x + (a_2 + 3a_3 + 6a_4 + 10a_5)x^2 + (a_3 + 4a_4 + 10a_5)x^3 + (a_4 + 5a_5)x^4 + a_5 x^5 \] ### Step 4: Set coefficients equal Now, we equate the coefficients of \(1 + x^4 + x^5\) on both sides: - Constant term: \(a_0 = 1\) - Coefficient of \(x\): \(a_1 + 2a_2 + 3a_3 + 4a_4 + 5a_5 = 0\) - Coefficient of \(x^2\): \(a_2 + 3a_3 + 6a_4 + 10a_5 = 0\) - Coefficient of \(x^3\): \(a_3 + 4a_4 + 10a_5 = 0\) - Coefficient of \(x^4\): \(a_4 + 5a_5 = 1\) - Coefficient of \(x^5\): \(a_5 = 1\) ### Step 5: Solve for \(a_5\) From the coefficient of \(x^5\), we have: \[ a_5 = 1 \] ### Step 6: Substitute \(a_5\) into the equations Now substitute \(a_5 = 1\) into the equation for \(x^4\): \[ a_4 + 5(1) = 1 \implies a_4 + 5 = 1 \implies a_4 = 1 - 5 = -4 \] ### Conclusion Thus, the value of \(a_4\) is: \[ \boxed{-4} \]

To solve the equation \(1 + x^4 + x^5 = \sum_{i=0}^{5} a_i (1 + x)^i\) for \(a_4\), we will follow these steps: ### Step 1: Expand the right-hand side The right-hand side can be expanded using the binomial theorem: \[ (1 + x)^i = \sum_{k=0}^{i} \binom{i}{k} x^k \] Thus, we can write: ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • MOCK TEST 10

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

Let (x+10)^(50)+(x-10)^(50)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(50)x^(50) for all x in R , then (a_(2))/(a_(0)) is equal to

If f(x) = sum_(r=1)^(n)a_(r)|x|^(r) , where a_(i) s are real constants, then f(x) is

If x+ iy=(1+ 4i)(1+5i) , then (x^(2)+y^(2)) is equal to :

If (x^(2)+x+1)/(1-x) = a_(0) + a_(1)x+a_(2)x^(2)+"…." , then sum_(r=1)^(50) a_(r) equal to

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

Let a_(1), a_(2), a_(3) , … be a G. P. such that a_(1)lt0 , a_(1)+a_(2)=4 and a_(3)+a_(4)=16 . If sum_(i=1)^(9) a_(i) = 4lambda , then lambda is equal to :

If (1-x-x^(2))^(20) = sum_(r=0)^(40)a_(r).x^(r ) , then value of a_(1) + 3a_(3) + 5a_(5) + "….." + 39a_(39) is

If log (1-x+x^(2))=a_(1)x+a_(2)x^(2)+a_(3)x^(3)+… then a_(3)+a_(6)+a_(9)+.. is equal to

If sum_(i=1)^200 sin^-1 x_i=100pi, then sum _(i=1)^200 x_i^2 is equal to

If sum_(i=1)^(5) (x_(i) - 6) = 5 and sum_(i=1)^(5)(x_(i)-6)^(2) = 25 , then the standard deviation of observations