Home
Class 12
MATHS
If tanalpha,tan beta are roots of the eq...

If `tanalpha,tan beta` are roots of the equation `(1 + cos theta) tan^(2) x - lambda tan x = 1 - cos theta` where `theta in (0, (pi)/(2))` and `cos^(2) (alpha + beta) = (1)/(51)` then `lambda` is :

A

`5sqrt2`

B

`10sqrt2`

C

10

D

5

Text Solution

Verified by Experts

The correct Answer is:
B

`cos^(2) (alpha + beta) =(1)/(51) rArr tan^(2) (alpha + beta) = 50`
`rArr ((tan alpha + tan beta)/(1-tanalpha tan beta))^(2) = 50 , [((lambda)/(1+costheta))/((1-(costheta-1)/(costheta +1)))]^(2) = 50`
`[(lambda)/(2)]^(2) =50 , " " lambda^(2) = 200, " " lambda = 10 sqrt(2)`
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 12

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 11

    VMC MODULES ENGLISH|Exercise MATHEMATICS (Section-2)|5 Videos
  • MOCK TEST 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS( SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are roots of the equation a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .

If alpha and beta are the roots of equation (k+1) tan^(2)x-sqrt2lambda tan(x)=1-k and tan^(2)(alpha+beta)=50 . Find the value of lambda

Let alpha and beta be the roots of the quadratic equation x^(2) sin theta - x (sin theta cos theta + 1) + cos theta = 0 (0 lt theta lt 45^(@)) , and alpha lt beta . Then Sigma_(n=0)^(oo) (alpha^(n) + ((-1)^(n))/(beta^(n))) is equal to

If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the equation 8x ^(2) -26x + 15 =0, then find the value of cos (alpha + beta).

Prove that (1 - cos 2 theta)/( sin 2 theta) = tan theta.

For all theta, tan theta+ cos theta + tan (-theta) + cos(-theta)=

If alpha and beta are roots of x^(2)-(sqrt(1-cos 2 theta))x+theta=0 , where 0 lt theta lt (pi)/2 . Then lim_(theta to 0^(+))(1/(alpha)+1/(beta)) is

If tan (alpha )/(2) : tan ""(beta)/(2) = 1 : sqrt3 show that cos beta = ( 2 cos alpha - 1 )/( 2- cos alpha ).