Home
Class 12
MATHS
If y = sqrt((cos x - sin x)(sec 2x + 1)(...

If `y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x))` ,
Then `(dy)/(dx)` at `x = (5 pi)/(6)` is :

A

`(1)/(sqrt(2))`

B

`-(1)/(sqrt(2))`

C

`(sqrt(3))/(2)`

D

`-(sqrt(3))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(x = \frac{5\pi}{6}\) for the function \(y = \sqrt{(\cos x - \sin x)(\sec 2x + 1)(\cos x + \sin x)}\), we will follow these steps: ### Step 1: Simplify the expression for \(y\) We start with the expression: \[ y = \sqrt{(\cos x - \sin x)(\sec 2x + 1)(\cos x + \sin x)} \] Using the identity \(a^2 - b^2 = (a - b)(a + b)\), we can rewrite \((\cos x - \sin x)(\cos x + \sin x)\) as: \[ \cos^2 x - \sin^2 x \] Thus, we have: \[ y = \sqrt{(\cos^2 x - \sin^2 x)(\sec 2x + 1)} \] ### Step 2: Substitute \(\sec 2x\) Recall that \(\sec 2x = \frac{1}{\cos 2x}\). Therefore: \[ \sec 2x + 1 = \frac{1 + \cos 2x}{\cos 2x} \] Substituting this into our expression for \(y\): \[ y = \sqrt{(\cos^2 x - \sin^2 x) \cdot \frac{1 + \cos 2x}{\cos 2x}} \] ### Step 3: Use the identity for \(1 + \cos 2x\) Using the identity \(1 + \cos 2x = 2\cos^2 x\), we can substitute: \[ y = \sqrt{(\cos^2 x - \sin^2 x) \cdot \frac{2 \cos^2 x}{\cos 2x}} \] ### Step 4: Simplify further Using the identity \(\cos 2x = \cos^2 x - \sin^2 x\), we can simplify: \[ y = \sqrt{(\cos^2 x - \sin^2 x) \cdot \frac{2 \cos^2 x}{\cos^2 x - \sin^2 x}} = \sqrt{2 \cos^2 x} \] Thus, we have: \[ y = \sqrt{2} \cdot |\cos x| \] ### Step 5: Evaluate \(y\) at \(x = \frac{5\pi}{6}\) At \(x = \frac{5\pi}{6}\): \[ \cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2} \] Thus: \[ y = \sqrt{2} \cdot \left| -\frac{\sqrt{3}}{2} \right| = \sqrt{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{2} \] ### Step 6: Differentiate \(y\) Now, we differentiate \(y\): \[ y = \sqrt{2} \cdot |\cos x| \] Since \(\cos x\) is negative in the second quadrant, we have: \[ y = -\sqrt{2} \cdot \cos x \] Differentiating: \[ \frac{dy}{dx} = -\sqrt{2} \cdot (-\sin x) = \sqrt{2} \cdot \sin x \] ### Step 7: Evaluate \(\frac{dy}{dx}\) at \(x = \frac{5\pi}{6}\) At \(x = \frac{5\pi}{6}\): \[ \sin\left(\frac{5\pi}{6}\right) = \frac{1}{2} \] Thus: \[ \frac{dy}{dx} = \sqrt{2} \cdot \frac{1}{2} = \frac{\sqrt{2}}{2} \] ### Final Answer The value of \(\frac{dy}{dx}\) at \(x = \frac{5\pi}{6}\) is: \[ \frac{dy}{dx} = \frac{1}{\sqrt{2}} \]

To find \(\frac{dy}{dx}\) at \(x = \frac{5\pi}{6}\) for the function \(y = \sqrt{(\cos x - \sin x)(\sec 2x + 1)(\cos x + \sin x)}\), we will follow these steps: ### Step 1: Simplify the expression for \(y\) We start with the expression: \[ y = \sqrt{(\cos x - \sin x)(\sec 2x + 1)(\cos x + \sin x)} \] ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 12

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 11

    VMC MODULES ENGLISH|Exercise MATHEMATICS (Section-2)|5 Videos
  • MOCK TEST 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS( SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If Y = ((2 - 3 cos x)/("sin" x)) , then (dy)/(dx) at x = (pi)/(4) is

If y = (cos x - sin x)/( cos x + sin x ) , "then " (dy)/(dx)

If f(x) = |cos x| + |sin x| , then dy/dx at x = (2pi)/3 is equal to

If f(x) = |cos x| + |sin x| , then dy/dx at x = (2pi)/3 is equal to

If (cos"x")^y=(sin y)^x , find (dy)/(dx)

If sin(x y)+cos(x y)=0 , then (dy)/(dx) is

If " " y=(sin(x/2)+cos(x/2))^2, (dy)/(dx) at x=pi/6

If y=sin^(-1)(sin x), then dy/dx at x =pi/2 is

If y=cos ^(-1)sin x , then dy/dx

If y=int_(0)^(x)sqrt(sin x)dx the value of (dy)/(dx) at x=(pi)/(2) is :