Home
Class 12
MATHS
If angle bisector of overline(a) = 2hat(...

If angle bisector of `overline(a) = 2hat(i) + 3 hat(j) + 4 hat(k)` and `overline(b) = 4hat(i) - 2 hat(j) + 3 hat(k)` is `overline(c ) = alpha hat(i) + 2 hat(j) + beta hat(k)` then

A

`vec(c). hat(k) + 7= 0`

B

`vec(c) .hat(k) - 14 = 0`

C

`vec(c) .hat(k) + 14 = 0 `

D

`vec(c) .hat(k) - 7 =0`

Text Solution

Verified by Experts

The correct Answer is:
B

The angle bisector of `vec(a)` and `vec(b)` is `vec(p)`
`vec(p) = lambda (hat(a) + hat(b))`
`lambda (((2hat(i) + 3hat(j) + 4hat(k))+(4hat(i) - 2hat(j) + 3hat(k)))/(sqrt(4+9+16))) = (lambda)/(sqrt(29))[6hat(i) + hat(j) + 7hat(k)]`
`= (lambda)/(2sqrt(29)) [12hat(i) + 2hat(j) + 14hat(k)]`
Then `vec(p) = vec(c) rArr alpha = 12 , beta = 14`
Now `vec(c) . hat(k) - 14 = 0`
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 12

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 11

    VMC MODULES ENGLISH|Exercise MATHEMATICS (Section-2)|5 Videos
  • MOCK TEST 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS( SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .

Find the volume of the parallelepiped whose edges are represented by the vectors overset(to) (a) = 2 hat(i) - 3 hat(j) -4 hat(k), overset(to)( b) = hat(i) + 2 hat(j) - hat(k) , overset(to)( c) =3 hat(i) - hat(j) - 2 hat(k) .

Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(k) and 2 hat(i) + hat(j) - 3 hat(k) is

Given two vectors A = -4hat(i) + 4hat(j) + 2hat(k) and B = 2hat(i) - hat(j) - hat(k) . The angle made by (A+B) with hat(i) + 2hat(j) - 4hat(k) is :

Find the projection of vec(b)+ vec(c ) on vec(a) where vec(a)= 2 hat(i) -2hat(j) + hat(k), vec(b)= hat(i) + 2hat(j)- 2hat(k), vec(c ) = 2hat(i) - hat(j) + 4hat(k)

The angle between the lines overset(to)( r)=(4 hat(i) - hat(j) )+ lambda(2 hat(i) + hat(j) - 3hat(k) ) and overset(to) (r )=( hat(i) -hat(j) + 2 hat(k) ) + mu (hat(i) - 3 hat(j) - 2 hat(k) ) is

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Find the unit vector perpendicular to both 2hat(i) + 3hat(j)+ hat(k) and hat(i)-hat(j)+ 4hat(k)