Home
Class 12
MATHS
In a DeltaABC, if a 100, c = 100 sqrt(2)...

In a `DeltaABC`, if a 100, c = 100 `sqrt(2)` and `A=30^(@)`, then B equals to

A

`45^(@) or 135^(@)`

B

`105^(@) or 15^(@)`

C

`60^(@) or 120^(@)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the sine rule in triangle ABC. Given the values: - Side \( a = 100 \) - Side \( c = 100\sqrt{2} \) - Angle \( A = 30^\circ \) We need to find angle \( B \). ### Step 1: Apply the Sine Rule The sine rule states that: \[ \frac{a}{\sin A} = \frac{c}{\sin C} \] Substituting the known values into the sine rule: \[ \frac{100}{\sin 30^\circ} = \frac{100\sqrt{2}}{\sin C} \] ### Step 2: Calculate \(\sin 30^\circ\) We know that: \[ \sin 30^\circ = \frac{1}{2} \] ### Step 3: Substitute \(\sin 30^\circ\) into the equation Now substituting \(\sin 30^\circ\) into the equation: \[ \frac{100}{\frac{1}{2}} = \frac{100\sqrt{2}}{\sin C} \] This simplifies to: \[ 200 = \frac{100\sqrt{2}}{\sin C} \] ### Step 4: Rearrange to find \(\sin C\) Now, we can rearrange this equation to solve for \(\sin C\): \[ \sin C = \frac{100\sqrt{2}}{200} \] This simplifies to: \[ \sin C = \frac{\sqrt{2}}{2} \] ### Step 5: Find angle \( C \) Now we need to find the angle corresponding to \(\sin C = \frac{\sqrt{2}}{2}\). The angles that satisfy this equation are: \[ C = 45^\circ \quad \text{or} \quad C = 135^\circ \] ### Step 6: Calculate angle \( B \) for both cases 1. **Case 1: \( C = 45^\circ \)** Using the triangle angle sum property: \[ A + B + C = 180^\circ \] Substituting the known values: \[ 30^\circ + B + 45^\circ = 180^\circ \] Solving for \( B \): \[ B = 180^\circ - 30^\circ - 45^\circ = 105^\circ \] 2. **Case 2: \( C = 135^\circ \)** Again using the triangle angle sum property: \[ 30^\circ + B + 135^\circ = 180^\circ \] Solving for \( B \): \[ B = 180^\circ - 30^\circ - 135^\circ = 15^\circ \] ### Conclusion Thus, angle \( B \) can be either \( 105^\circ \) or \( 15^\circ \). ### Final Answer The possible values for angle \( B \) are \( 105^\circ \) or \( 15^\circ \).

To solve the problem, we will use the sine rule in triangle ABC. Given the values: - Side \( a = 100 \) - Side \( c = 100\sqrt{2} \) - Angle \( A = 30^\circ \) We need to find angle \( B \). ...
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • TANGENTS AND NORMALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

In a DeltaABC , if a = 40, c=40sqrt(3) and B=30^(@) , then the triangle is

In a DeltaABC , if b=sqrt(3)+1, c=sqrt(3)-1 and A=60^(@) , then the value of tan.(B-C)/(2) is

In a DeltaABC , if b =(sqrt3-1) a and angle C=30^(@), then the value of (A-B) is equal to (All symbols used have usual meaning in the triangel.)

In a DeltaABC , if A=30^(@) , C=105^(@) and b=3sqrt(2) , then a =

In a DeltaABC , if a = 3, b=2sqrt(3) and c=sqrt(3) , then A=

In a DeltaABC if b =a (sqrt3-1) and /_C =30^@ then the measure of the angle A is

In a DeltaABC , if c = 2, A=120^(@), a=sqrt(6) , then C=

In a DeltaABC , if A=120^(@), b=2 and C=30^(@) , then a=

In a DeltaABC , if a = 5, B=45^(@) and c=2sqrt(2) , then b=

In a DeltaABC , if A=45^(@) , b=sqrt(6) , a=2, then B=