Home
Class 12
MATHS
In a DeltaABC, if a = 40, c=40sqrt(3) an...

In a `DeltaABC`, if a = 40, `c=40sqrt(3)` and `B=30^(@)`, then the triangle is

A

isosceles

B

equilateral

C

right angled

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the Law of Cosines to determine the properties of triangle ABC given the sides and angle. ### Step-by-Step Solution: 1. **Identify the Given Values:** - Side \( a = 40 \) - Side \( c = 40\sqrt{3} \) - Angle \( B = 30^\circ \) 2. **Apply the Law of Cosines:** The Law of Cosines states: \[ \cos B = \frac{a^2 + c^2 - b^2}{2ac} \] We need to find \( b \) using the values we have. 3. **Substitute the Known Values:** Substitute \( a \), \( c \), and \( B \) into the equation: \[ \cos(30^\circ) = \frac{40^2 + (40\sqrt{3})^2 - b^2}{2 \cdot 40 \cdot 40\sqrt{3}} \] 4. **Calculate \( \cos(30^\circ) \):** We know that: \[ \cos(30^\circ) = \frac{\sqrt{3}}{2} \] 5. **Calculate \( a^2 \) and \( c^2 \):** \[ a^2 = 40^2 = 1600 \] \[ c^2 = (40\sqrt{3})^2 = 1600 \cdot 3 = 4800 \] 6. **Substitute Values into the Equation:** Now, substituting \( a^2 \) and \( c^2 \) into the equation gives: \[ \frac{\sqrt{3}}{2} = \frac{1600 + 4800 - b^2}{2 \cdot 40 \cdot 40\sqrt{3}} \] 7. **Simplify the Equation:** The denominator becomes: \[ 2 \cdot 40 \cdot 40\sqrt{3} = 3200\sqrt{3} \] Thus, the equation simplifies to: \[ \frac{\sqrt{3}}{2} = \frac{6400 - b^2}{3200\sqrt{3}} \] 8. **Cross Multiply:** Cross multiplying gives: \[ \sqrt{3} \cdot 3200\sqrt{3} = 2(6400 - b^2) \] Simplifying this, we have: \[ 9600 = 12800 - 2b^2 \] 9. **Rearranging to Solve for \( b^2 \):** Rearranging gives: \[ 2b^2 = 12800 - 9600 \] \[ 2b^2 = 3200 \] \[ b^2 = 1600 \] 10. **Finding \( b \):** Taking the square root gives: \[ b = \sqrt{1600} = 40 \] 11. **Determine the Type of Triangle:** Since \( a = 40 \), \( b = 40 \), and \( c = 40\sqrt{3} \), we see that two sides are equal (\( a = b \)). Therefore, triangle ABC is an **isosceles triangle**. ### Conclusion: The triangle ABC is an isosceles triangle.

To solve the problem, we will use the Law of Cosines to determine the properties of triangle ABC given the sides and angle. ### Step-by-Step Solution: 1. **Identify the Given Values:** - Side \( a = 40 \) - Side \( c = 40\sqrt{3} \) - Angle \( B = 30^\circ \) ...
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • TANGENTS AND NORMALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

In a DeltaABC , if a 100, c = 100 sqrt(2) and A=30^(@) , then B equals to

In a DeltaABC , if a = 3, b=2sqrt(3) and c=sqrt(3) , then A=

In a DeltaABC , if b=sqrt(3)+1, c=sqrt(3)-1 and A=60^(@) , then the value of tan.(B-C)/(2) is

In a DeltaABC if b =a (sqrt3-1) and /_C =30^@ then the measure of the angle A is

In a DeltaABC , if b =(sqrt3-1) a and angle C=30^(@), then the value of (A-B) is equal to (All symbols used have usual meaning in the triangel.)

In a Delta ABC, if angle A = 40^(@) and angle B = 55^(@) " then " angle C is

In a DeltaABC , if a = 5, B=45^(@) and c=2sqrt(2) , then b=

In a DeltaABC , if A=30^(@) , C=105^(@) and b=3sqrt(2) , then a =

In a Delta ABC b= sqrt(3)+1, c=sqrt(3)-1 , angle A = 60 ^@ then the value of tan (B-C)/(2) is :-

In a DeltaABC , if A=120^(@), b=2 and C=30^(@) , then a=