Home
Class 12
MATHS
If a=sqrt3 +1, B=30^@, C=45^@, then c=...

If `a=sqrt3 +1, B=30^@, C=45^@`, then `c=`

A

3

B

2

C

4

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( a = \sqrt{3} + 1 \), \( B = 30^\circ \), and \( C = 45^\circ \), we need to find the side \( c \) using the sine rule. ### Step-by-Step Solution: **Step 1: Identify the angles and sides of the triangle.** - We have: - \( a \) opposite angle \( A \) - \( b \) opposite angle \( B \) (which is \( 30^\circ \)) - \( c \) opposite angle \( C \) (which is \( 45^\circ \)) **Step 2: Use the sine rule.** - The sine rule states: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] **Step 3: Write the equation for \( c \) using the sine rule.** - We can express \( c \) in terms of \( a \) and the angles: \[ \frac{a}{\sin A} = \frac{c}{\sin C} \] Rearranging gives: \[ c = a \cdot \frac{\sin C}{\sin A} \] **Step 4: Find angle \( A \).** - Since the sum of angles in a triangle is \( 180^\circ \): \[ A + B + C = 180^\circ \] Substituting the known angles: \[ A + 30^\circ + 45^\circ = 180^\circ \] Therefore: \[ A = 180^\circ - 75^\circ = 105^\circ \] **Step 5: Substitute values into the equation for \( c \).** - Now we need to find \( \sin A \) and \( \sin C \): - \( \sin C = \sin 45^\circ = \frac{1}{\sqrt{2}} \) - \( \sin A = \sin 105^\circ \) **Step 6: Calculate \( \sin 105^\circ \).** - Using the angle addition formula: \[ \sin 105^\circ = \sin(60^\circ + 45^\circ) = \sin 60^\circ \cos 45^\circ + \cos 60^\circ \sin 45^\circ \] Substituting values: \[ = \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}} + \frac{1}{2} \cdot \frac{1}{\sqrt{2}} = \frac{\sqrt{3} + 1}{2\sqrt{2}} \] **Step 7: Substitute back into the equation for \( c \).** - Now substituting \( a \) and the sine values: \[ c = (\sqrt{3} + 1) \cdot \frac{\frac{1}{\sqrt{2}}}{\frac{\sqrt{3} + 1}{2\sqrt{2}}} \] **Step 8: Simplify the expression for \( c \).** - The \( \sqrt{2} \) cancels out: \[ c = (\sqrt{3} + 1) \cdot \frac{2}{\sqrt{3} + 1} = 2 \] ### Final Answer: Thus, the value of \( c \) is \( 2 \). ---

To solve the problem where \( a = \sqrt{3} + 1 \), \( B = 30^\circ \), and \( C = 45^\circ \), we need to find the side \( c \) using the sine rule. ### Step-by-Step Solution: **Step 1: Identify the angles and sides of the triangle.** - We have: - \( a \) opposite angle \( A \) - \( b \) opposite angle \( B \) (which is \( 30^\circ \)) ...
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • TANGENTS AND NORMALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

If b=sqrt(3), c=1 and angleA=30^(@) , then the measure of angleB is

In a DeltaABC , if a = 40, c=40sqrt(3) and B=30^(@) , then the triangle is

Given b = 2, c = sqrt3, angle A = 30^(@) , then inradius of DeltaABC is

In a DeltaABC , if b =(sqrt3-1) a and angle C=30^(@), then the value of (A-B) is equal to (All symbols used have usual meaning in the triangel.)

In a DeltaABC if b =a (sqrt3-1) and /_C =30^@ then the measure of the angle A is

In a DeltaA B C ,\ if\ b=sqrt(3),\ c=1\ a n d\ /_A=30^0 , then find a

If in a Delta ABC, b =sqrt3, c=1 and B-C =90^(@), then angle A is

In a Delta A B C ,if a=2,/_B=60^0a n d/_C=75^0 , then b= (a) sqrt(3) (b) sqrt(6) (c) sqrt(9) (d) 1+sqrt(2)

If a=1+sqrt(3), b=2 and c=sqrt(2) , then the measure of angleB is

In a triangle ABC, if (sqrt3-1)a = 2b, A = 3B , then /_C is