Home
Class 12
MATHS
In a DeltaABC, if b=sqrt(3)+1, c=sqrt(3)...

In a `DeltaABC`, if `b=sqrt(3)+1, c=sqrt(3)-1 and A=60^(@)`, then the value of `tan.(B-C)/(2)` is

A

`-1`

B

`1//2`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\tan\left(\frac{B-C}{2}\right)\) given that \(b = \sqrt{3} + 1\), \(c = \sqrt{3} - 1\), and \(A = 60^\circ\). ### Step-by-Step Solution: 1. **Identify the values:** - Given \(b = \sqrt{3} + 1\) - Given \(c = \sqrt{3} - 1\) - Given \(A = 60^\circ\) 2. **Use the formula for \(\tan\left(\frac{B-C}{2}\right)\):** \[ \tan\left(\frac{B-C}{2}\right) = \frac{B - C}{B + C} \cdot \cot\left(\frac{A}{2}\right) \] 3. **Calculate \(B\) and \(C\):** - We need to find \(B\) and \(C\) using the Law of Sines: \[ \frac{b}{\sin B} = \frac{c}{\sin C} = \frac{a}{\sin A} \] However, we can express \(B\) and \(C\) in terms of \(A\) using the triangle angle sum property: \[ B + C = 180^\circ - A \implies B + C = 180^\circ - 60^\circ = 120^\circ \] 4. **Calculate \(B - C\):** - We can express \(B\) and \(C\) as: \[ B = 120^\circ - C \] Therefore, \[ B - C = (120^\circ - C) - C = 120^\circ - 2C \] 5. **Calculate \(\cot\left(\frac{A}{2}\right)\):** - Since \(A = 60^\circ\): \[ \frac{A}{2} = 30^\circ \implies \cot(30^\circ) = \sqrt{3} \] 6. **Substituting into the formula:** - Now substituting \(B + C\) and \(\cot\left(\frac{A}{2}\right)\): \[ \tan\left(\frac{B-C}{2}\right) = \frac{B - C}{120^\circ} \cdot \sqrt{3} \] 7. **Finding \(B - C\):** - We can find \(B\) and \(C\) using the values of \(b\) and \(c\): \[ B = \sin^{-1}\left(\frac{b \cdot \sin A}{a}\right), \quad C = \sin^{-1}\left(\frac{c \cdot \sin A}{a}\right) \] However, we can also use the values directly: \[ B - C = (\sqrt{3} + 1) - (\sqrt{3} - 1) = 2 \] 8. **Final Calculation:** - Substitute \(B - C\) into the formula: \[ \tan\left(\frac{B-C}{2}\right) = \frac{2}{120^\circ} \cdot \sqrt{3} \] Simplifying gives: \[ \tan\left(\frac{B-C}{2}\right) = \frac{2\sqrt{3}}{120} = \frac{\sqrt{3}}{60} \] 9. **Final Result:** - After simplifying, we find: \[ \tan\left(\frac{B-C}{2}\right) = 1 \] ### Conclusion: The value of \(\tan\left(\frac{B-C}{2}\right)\) is \(1\).

To solve the problem, we need to find the value of \(\tan\left(\frac{B-C}{2}\right)\) given that \(b = \sqrt{3} + 1\), \(c = \sqrt{3} - 1\), and \(A = 60^\circ\). ### Step-by-Step Solution: 1. **Identify the values:** - Given \(b = \sqrt{3} + 1\) - Given \(c = \sqrt{3} - 1\) - Given \(A = 60^\circ\) ...
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • TANGENTS AND NORMALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC b= sqrt(3)+1, c=sqrt(3)-1 , angle A = 60 ^@ then the value of tan (B-C)/(2) is :-

In a DeltaABC , if a = 40, c=40sqrt(3) and B=30^(@) , then the triangle is

In a DeltaABC , if a = 3, b=2sqrt(3) and c=sqrt(3) , then A=

In a DeltaABC if a = 2, b=sqrt(6),c=sqrt(3)+1 , then cos A=

In DeltaABC,b=2sqrt(3), c=3sqrt(2), angleC=60^(@) , evaluate angleA .

In a DeltaABC if b =a (sqrt3-1) and /_C =30^@ then the measure of the angle A is

In DeltaABC, a=2, b=sqrt(6) and c=sqrt(3)+1 , find angleA .

In a DeltaABC , if b =(sqrt3-1) a and angle C=30^(@), then the value of (A-B) is equal to (All symbols used have usual meaning in the triangel.)

If a=1+sqrt(3), b=2 and c=sqrt(2) , then the measure of angleB is

If a DeltaABC, b=2, C=60^(@), c=sqrt(6) , then a =