Home
Class 12
MATHS
In a DeltaABC, if A=120^(@), b=2 and C=3...

In a `DeltaABC`, if `A=120^(@), b=2` and `C=30^(@)`, then a=

A

`2sqrt(3)`

B

2

C

`(sqrt(3))/(2)`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of side \( a \) in triangle \( ABC \) given \( A = 120^\circ \), \( b = 2 \), and \( C = 30^\circ \), we can use the Law of Sines. Here are the steps to solve the problem: ### Step 1: Find angle \( B \) Using the triangle angle sum property, we know that the sum of the angles in a triangle is \( 180^\circ \). Therefore, we can find angle \( B \) as follows: \[ B = 180^\circ - A - C \] Substituting the values of \( A \) and \( C \): \[ B = 180^\circ - 120^\circ - 30^\circ = 30^\circ \] ### Step 2: Apply the Law of Sines The Law of Sines states that: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] We will use the first two parts of the equation to find \( a \): \[ \frac{a}{\sin A} = \frac{b}{\sin B} \] Substituting the known values: \[ \frac{a}{\sin 120^\circ} = \frac{2}{\sin 30^\circ} \] ### Step 3: Calculate \( \sin 120^\circ \) and \( \sin 30^\circ \) We know: \[ \sin 120^\circ = \sin(180^\circ - 60^\circ) = \sin 60^\circ = \frac{\sqrt{3}}{2} \] \[ \sin 30^\circ = \frac{1}{2} \] ### Step 4: Substitute the sine values into the equation Now substituting the sine values back into the equation: \[ \frac{a}{\frac{\sqrt{3}}{2}} = \frac{2}{\frac{1}{2}} \] ### Step 5: Simplify the right side Calculating the right side: \[ \frac{2}{\frac{1}{2}} = 2 \times 2 = 4 \] ### Step 6: Solve for \( a \) Now we can solve for \( a \): \[ \frac{a}{\frac{\sqrt{3}}{2}} = 4 \] Multiplying both sides by \( \frac{\sqrt{3}}{2} \): \[ a = 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3} \] ### Final Answer Thus, the length of side \( a \) is: \[ a = 2\sqrt{3} \]

To find the length of side \( a \) in triangle \( ABC \) given \( A = 120^\circ \), \( b = 2 \), and \( C = 30^\circ \), we can use the Law of Sines. Here are the steps to solve the problem: ### Step 1: Find angle \( B \) Using the triangle angle sum property, we know that the sum of the angles in a triangle is \( 180^\circ \). Therefore, we can find angle \( B \) as follows: \[ B = 180^\circ - A - C \] ...
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • TANGENTS AND NORMALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

In a DeltaABC , if A=45^(@) and B=75^(@) , then a+sqrt(2)c=

In a DeltaABC , if A=30^(@) , C=105^(@) and b=3sqrt(2) , then a =

In a DeltaABC , if a = 40, c=40sqrt(3) and B=30^(@) , then the triangle is

In a DeltaABC , if c = 2, A=120^(@), a=sqrt(6) , then C=

In a DeltaABC , if a 100, c = 100 sqrt(2) and A=30^(@) , then B equals to

In a DeltaABC , if a =2x, b =2y and angle C =120° , then area of the triangle is

In a DeltaABC , if a = 5, B=45^(@) and c=2sqrt(2) , then b=

In a DeltaABC if b =a (sqrt3-1) and /_C =30^@ then the measure of the angle A is

If in any DeltaABC, A = 30^@ and B = 60^@ , then find a : b : c

In DeltaABC, if A = 30^@,b= 8,a=6, B = sin^-1 x , then x=