Home
Class 12
MATHS
In a DeltaABC, if a = 3, b=2sqrt(3) and ...

In a `DeltaABC`, if a = 3, `b=2sqrt(3)` and `c=sqrt(3)`, then A=

A

`30^(@)`

B

`45^(@)`

C

`60^(@)`

D

`75^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle \( A \) in triangle \( ABC \) where \( a = 3 \), \( b = 2\sqrt{3} \), and \( c = \sqrt{3} \), we can use the Law of Cosines. The Law of Cosines states that: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] ### Step 1: Substitute the values of \( a \), \( b \), and \( c \) Given: - \( a = 3 \) - \( b = 2\sqrt{3} \) - \( c = \sqrt{3} \) Substituting these values into the formula: \[ \cos A = \frac{(2\sqrt{3})^2 + (\sqrt{3})^2 - (3)^2}{2 \cdot (2\sqrt{3}) \cdot (\sqrt{3})} \] ### Step 2: Calculate \( b^2 \), \( c^2 \), and \( a^2 \) Calculating each term: \[ b^2 = (2\sqrt{3})^2 = 4 \cdot 3 = 12 \] \[ c^2 = (\sqrt{3})^2 = 3 \] \[ a^2 = (3)^2 = 9 \] ### Step 3: Substitute the squared values into the equation Now substituting these squared values back into the equation: \[ \cos A = \frac{12 + 3 - 9}{2 \cdot (2\sqrt{3}) \cdot (\sqrt{3})} \] ### Step 4: Simplify the numerator Calculating the numerator: \[ 12 + 3 - 9 = 6 \] ### Step 5: Calculate the denominator Now calculate the denominator: \[ 2 \cdot (2\sqrt{3}) \cdot (\sqrt{3}) = 2 \cdot 2 \cdot 3 = 12 \] ### Step 6: Substitute back into the equation Now we have: \[ \cos A = \frac{6}{12} = \frac{1}{2} \] ### Step 7: Find angle \( A \) To find angle \( A \): \[ A = \cos^{-1}\left(\frac{1}{2}\right) \] From trigonometric values, we know: \[ A = 60^\circ \] ### Final Answer Thus, the angle \( A \) is \( 60^\circ \). ---

To find the angle \( A \) in triangle \( ABC \) where \( a = 3 \), \( b = 2\sqrt{3} \), and \( c = \sqrt{3} \), we can use the Law of Cosines. The Law of Cosines states that: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] ### Step 1: Substitute the values of \( a \), \( b \), and \( c \) ...
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • TANGENTS AND NORMALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

In a DeltaABC if a = 2, b=sqrt(6),c=sqrt(3)+1 , then cos A=

In a DeltaABC , if a = 5, B=45^(@) and c=2sqrt(2) , then b=

In a DeltaABC , if a = 40, c=40sqrt(3) and B=30^(@) , then the triangle is

In DeltaABC, a=2, b=sqrt(6) and c=sqrt(3)+1 , find angleA .

In a DeltaABC , if b=sqrt(3)+1, c=sqrt(3)-1 and A=60^(@) , then the value of tan.(B-C)/(2) is

In a DeltaABC , if A=30^(@) , C=105^(@) and b=3sqrt(2) , then a =

If in any DeltaABC, B = 60^@ and b : c = sqrt(3) : sqrt(2) , then find A.

Find the greatest angle of DeltaABC if : a=2, b = sqrt(6), c = sqrt(3) +1

In DeltaABC, tanA=2, tanB=(3)/(2) and c=sqrt(65) , then circumradius of the triangle is : (a) 65 (b) (65)/(7) (c) (65)/(14) (d) none of these

Find the unknown parts of DeltaABC if a = sqrt(3) + 1, b = sqrt(3) - 1, C=60^0 .