Home
Class 12
MATHS
In a DeltaABC, if a = 5, B=45^(@) and c=...

In a `DeltaABC`, if a = 5, `B=45^(@)` and `c=2sqrt(2)`, then b=

A

`sqrt(3)`

B

6

C

`2sqrt(13)`

D

`sqrt(13)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve for \( b \) in triangle \( ABC \) with given values \( a = 5 \), \( B = 45^\circ \), and \( c = 2\sqrt{2} \), we will use the Law of Cosines. ### Step-by-Step Solution: 1. **Write the Law of Cosines Formula**: The Law of Cosines states that: \[ b^2 = a^2 + c^2 - 2ac \cdot \cos(B) \] 2. **Substitute the Known Values**: We know: - \( a = 5 \) - \( c = 2\sqrt{2} \) - \( B = 45^\circ \) Substitute these values into the formula: \[ b^2 = 5^2 + (2\sqrt{2})^2 - 2 \cdot 5 \cdot 2\sqrt{2} \cdot \cos(45^\circ) \] 3. **Calculate Each Term**: - \( 5^2 = 25 \) - \( (2\sqrt{2})^2 = 4 \cdot 2 = 8 \) - \( \cos(45^\circ) = \frac{1}{\sqrt{2}} \) Now substitute these values: \[ b^2 = 25 + 8 - 2 \cdot 5 \cdot 2\sqrt{2} \cdot \frac{1}{\sqrt{2}} \] 4. **Simplify the Expression**: - The term \( 2 \cdot 5 \cdot 2\sqrt{2} \cdot \frac{1}{\sqrt{2}} = 20 \) Thus, we have: \[ b^2 = 25 + 8 - 20 \] \[ b^2 = 13 \] 5. **Take the Square Root**: To find \( b \), take the square root of both sides: \[ b = \sqrt{13} \] ### Final Answer: Thus, the value of \( b \) is \( \sqrt{13} \). ---

To solve for \( b \) in triangle \( ABC \) with given values \( a = 5 \), \( B = 45^\circ \), and \( c = 2\sqrt{2} \), we will use the Law of Cosines. ### Step-by-Step Solution: 1. **Write the Law of Cosines Formula**: The Law of Cosines states that: \[ b^2 = a^2 + c^2 - 2ac \cdot \cos(B) ...
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • TANGENTS AND NORMALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

In a DeltaABC , if a = 3, b=2sqrt(3) and c=sqrt(3) , then A=

In a DeltaABC , if A=30^(@) , C=105^(@) and b=3sqrt(2) , then a =

In DeltaABC , given /_A=45^(@) , /_B=105^(@) , c=sqrt(2) , then

In a DeltaABC if a = 2, b=sqrt(6),c=sqrt(3)+1 , then cos A=

In a DeltaABC ,a =5 , b= 4 , and tan(C/2)=sqrt(7/9) , then c =

In a DeltaABC , if A=45^(@) and B=75^(@) , then a+sqrt(2)c=

In a DeltaABC , if A=45^(@) , b=sqrt(6) , a=2, then B=

In a DeltaABC , if a 100, c = 100 sqrt(2) and A=30^(@) , then B equals to

If in any DeltaABC, B = 60^@ and b : c = sqrt(3) : sqrt(2) , then find A.

In a DeltaABC , if a =2, B = 60°and C =75°, then b=