Home
Class 12
MATHS
If 2-3x-2x^(2) ge 0, then...

If `2-3x-2x^(2) ge 0`, then

A

`x le -2`

B

`-2 le x le(1)/(2)`

C

`x ge -2`

D

`x le (1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(2 - 3x - 2x^2 \geq 0\), we will follow these steps: ### Step 1: Rewrite the Inequality Start with the given inequality: \[ 2 - 3x - 2x^2 \geq 0 \] ### Step 2: Multiply by -1 To simplify the expression, we can multiply the entire inequality by -1. Remember that multiplying by a negative number reverses the inequality sign: \[ - (2 - 3x - 2x^2) \leq 0 \] This simplifies to: \[ -2 + 3x + 2x^2 \leq 0 \] or rearranging gives: \[ 2x^2 + 3x - 2 \leq 0 \] ### Step 3: Factor the Quadratic Expression Next, we will factor the quadratic expression \(2x^2 + 3x - 2\). We can split the middle term: \[ 2x^2 + 4x - x - 2 \leq 0 \] Grouping the terms: \[ (2x^2 + 4x) + (-x - 2) \leq 0 \] Factoring out common terms: \[ 2x(x + 2) - 1(x + 2) \leq 0 \] Now we can factor out \((x + 2)\): \[ (2x - 1)(x + 2) \leq 0 \] ### Step 4: Find Critical Points Set each factor to zero to find the critical points: 1. \(2x - 1 = 0 \Rightarrow x = \frac{1}{2}\) 2. \(x + 2 = 0 \Rightarrow x = -2\) ### Step 5: Test Intervals Now we will test the intervals determined by the critical points \(-2\) and \(\frac{1}{2}\): - Choose a test point in each interval: - For \(x < -2\) (e.g., \(x = -3\)): \((2(-3) - 1)(-3 + 2) = (-7)(-1) = 7 > 0\) - For \(-2 < x < \frac{1}{2}\) (e.g., \(x = 0\)): \((2(0) - 1)(0 + 2) = (-1)(2) = -2 < 0\) - For \(x > \frac{1}{2}\) (e.g., \(x = 1\)): \((2(1) - 1)(1 + 2) = (1)(3) = 3 > 0\) ### Step 6: Determine the Solution Set The inequality \((2x - 1)(x + 2) \leq 0\) holds true in the interval \([-2, \frac{1}{2}]\). Since the inequality includes equal to zero, we include the endpoints. ### Final Solution Thus, the solution to the inequality \(2 - 3x - 2x^2 \geq 0\) is: \[ x \in [-2, \frac{1}{2}] \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|20 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • AREAS OF BOUNDED REGIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

2x + y ge 0

If 3^(x)+2^(2x) ge 5^(x) , then the solution set for x, is

The solution of |x^(2) + 3x|+x^(2)-2 ge 0 is

if f(x) ={{:( x-1, xlt 0),( x^(2) - 2x , x ge 0):} , then

If f(x) ge0 for all x, then f(2-x) is

-3x + 2y ge - 6

Solve ((x+2)(x^2-2x+1))/(-4 +3x-x^2) ge 0

If 3x -x^2ge2 and y^2+yle2 , then

Solution set of the inequality, 2-log_(2)(x^(2)+3x) ge0 is-

If 1+2x +3x^2+4x^3 +…..oo ge 4 then