Home
Class 12
MATHS
Solve the inequality: log(x)2.log(2x)2. ...

Solve the inequality: `log_(x)2.log_(2x)2. log_(2)4x gt 1`

A

`(1,2^(sqrt(2)))`

B

`(1//sqrt(2),1)`

C

`(2^(sqrt(-2)),1//2)`

D

`(2^(-sqrt(2)),1//2) cup (1,2^(sqrt(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \log_{x}2 \cdot \log_{2x}2 \cdot \log_{4x}2 > 1 \), we will follow these steps: ### Step 1: Rewrite the logarithms Using the change of base formula, we can rewrite the logarithms: \[ \log_{x}2 = \frac{1}{\log_{2}x}, \quad \log_{2x}2 = \frac{1}{\log_{2}2x} = \frac{1}{1 + \log_{2}x}, \quad \log_{4x}2 = \frac{1}{\log_{2}4x} = \frac{1}{2 + \log_{2}x} \] Thus, the inequality becomes: \[ \frac{1}{\log_{2}x} \cdot \frac{1}{1 + \log_{2}x} \cdot \frac{1}{2 + \log_{2}x} > 1 \] ### Step 2: Combine the fractions Combining the fractions gives: \[ \frac{1}{\log_{2}x \cdot (1 + \log_{2}x) \cdot (2 + \log_{2}x)} > 1 \] This implies: \[ \log_{2}x \cdot (1 + \log_{2}x) \cdot (2 + \log_{2}x) < 1 \] ### Step 3: Let \( y = \log_{2}x \) Substituting \( y \) for \( \log_{2}x \), we rewrite the inequality: \[ y(1 + y)(2 + y) < 1 \] ### Step 4: Expand the left side Expanding the left side: \[ y(1 + y)(2 + y) = y(2 + 3y + y^2) = 2y + 3y^2 + y^3 \] Thus, we need to solve: \[ 2y + 3y^2 + y^3 < 1 \] ### Step 5: Rearrange the inequality Rearranging gives: \[ y^3 + 3y^2 + 2y - 1 < 0 \] ### Step 6: Find the roots of the cubic equation To find the roots of \( y^3 + 3y^2 + 2y - 1 = 0 \), we can use the Rational Root Theorem or numerical methods. Testing \( y = -1 \): \[ (-1)^3 + 3(-1)^2 + 2(-1) - 1 = -1 + 3 - 2 - 1 = -1 \quad \text{(not a root)} \] Testing \( y = 0 \): \[ 0 + 0 - 1 = -1 \quad \text{(not a root)} \] Testing \( y = 1 \): \[ 1 + 3 + 2 - 1 = 5 \quad \text{(not a root)} \] Testing \( y = -2 \): \[ (-2)^3 + 3(-2)^2 + 2(-2) - 1 = -8 + 12 - 4 - 1 = -1 \quad \text{(not a root)} \] Using numerical methods or graphing, we find the roots approximately. ### Step 7: Analyze the intervals Using the roots, we can analyze the intervals where \( y^3 + 3y^2 + 2y - 1 < 0 \) holds true. ### Step 8: Convert back to \( x \) After determining the intervals for \( y \), we convert back to \( x \) using \( y = \log_{2}x \): \[ x = 2^{y} \] ### Step 9: Final solution The final solution will be the intervals for \( x \) based on the values of \( y \).

To solve the inequality \( \log_{x}2 \cdot \log_{2x}2 \cdot \log_{4x}2 > 1 \), we will follow these steps: ### Step 1: Rewrite the logarithms Using the change of base formula, we can rewrite the logarithms: \[ \log_{x}2 = \frac{1}{\log_{2}x}, \quad \log_{2x}2 = \frac{1}{\log_{2}2x} = \frac{1}{1 + \log_{2}x}, \quad \log_{4x}2 = \frac{1}{\log_{2}4x} = \frac{1}{2 + \log_{2}x} \] Thus, the inequality becomes: ...
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • MISCELLANEOUS EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • MEASURES OF CENTRAL TENDENCY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|31 Videos

Similar Questions

Explore conceptually related problems

Solve the inequality: log_(2)(2x-3)gtlog_(2)(24-6x)

Solve the inequality: log_(1//2)(x+1) gt log_(2)(2-x)

Solve the equation: log_2x+log_4(x+2)=2

Solve the inequation log_(2x+3)x^(2)ltlog_(2x+3)(2x+3)

Solve the equation: log_(2x+3)x^(2) lt log_(2x)(2x+3)

Solve the in equality log_(1/4) (2-x)>log_(1/4) (2/(x+1)) .

The smallest integral x satisfying the inequality (1-log_(4)x)/(1+log_(2)x)le (1)/(2)x is.

Solve for x: a) log_(x)2. log_(2x)2 = log_(4x)2 b) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3.

The set of real values of x satisfying the inequality log_(x+1/x)(log_2((x-1)/(x+2))) gt 0, is equal to

Solve (log)_x2(log)_(2x)2=(log)_(4x)2.

OBJECTIVE RD SHARMA ENGLISH-MISCELLANEOUS EQUATIONS AND INEQUATIONS -Chapter Test
  1. Solve the inequality: log(x)2.log(2x)2. log(2)4x gt 1

    Text Solution

    |

  2. If 3^(x)+2^(2x) ge 5^(x), then the solution set for x, is

    Text Solution

    |

  3. The number of real solutions of the equation 1-x=[cosx] is

    Text Solution

    |

  4. The number of solutions of [sin x+cos x]=3+[-sin x]+[-cos x] in the ...

    Text Solution

    |

  5. Let x=(a+2b)/(a+b) and y=(a)/(b), where a and b are positive integers....

    Text Solution

    |

  6. The solution set contained in Rof the following inequation3^x+3^(1-x)...

    Text Solution

    |

  7. If 0lt x lt pi//2 and sin^(n) x+ cos^(n) x ge 1 , then

    Text Solution

    |

  8. The number of real roots of the equation x^(2)+x+3+2 sin x=0, x in [...

    Text Solution

    |

  9. The number of real roots of the equation 1+3^(x//2)=2^(x), is

    Text Solution

    |

  10. Total number of solutions of the equation sin pi x=|ln(e)|x|| is :

    Text Solution

    |

  11. The number of roots of the equation [sin^(-1)x]=x-[x], is

    Text Solution

    |

  12. The number of values of a for which the system of equations 2^(|x|)+|x...

    Text Solution

    |

  13. The number of real solutions (x, y, z, t) of simultaneous equations 2y...

    Text Solution

    |

  14. If the sum of the greatest integer less than or equal to x and the lea...

    Text Solution

    |

  15. If x,y and z are real such that x+y+z=4, x^(2)+y^(2)+z^(2)=6, x belong...

    Text Solution

    |

  16. Consider the equation : x^(2)+198x+30=2sqrt(x^(2)+18x+45)

    Text Solution

    |

  17. x^(8)-x^(5)-(1)/(x)+(1)/(x^(4)) gt 0, is satisfied for

    Text Solution

    |

  18. The number of solutions of the equation ((1+e^(x^(2)))sqrt(1+x^(2)))...

    Text Solution

    |

  19. The number of real roots of the equation 1+a(1)x+a(2)x^(2)+………..a(n)...

    Text Solution

    |

  20. Let a,b be integers and f(x) be a polynomial with integer coefficients...

    Text Solution

    |

  21. Let Pn(ix) =1+2x+3x^2+............+(n+1)x^n be a polynomial such that...

    Text Solution

    |