Home
Class 12
MATHS
Let a=Sigma(n=0)^(oo) (x^(3n))/((3n))!,...

Let `a=Sigma_(n=0)^(oo) (x^(3n))/((3n))!, b =Sigma_(n=1)^(oo) (x^(3n-2))/(3n-2)!` and
`C=Sigma_(n=1)^(oo) (x^(3n-1))/(3n-1)!` and w be a complex cube root of unity
Statement 1: a+b+c`=e^(x),a+bw+cw^(2)=e^(wx) and a+bw^(2)+cw=e^(w^(2))`
Statement 2: `a^(3)+b^(3)+C^(3)-3abc=1`

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

We have
`a+b+c=underst(n=0)overset(infty)Sigma (x^(3n))/((3n))!+underset(n=1)overset(infty)Sigma (x^(3n-2))/(3x-2)!+underset(n=1)overset(infty)Sigma(x^(3n-1))/(3n-1)!`
`rarr a+b+c=1+x+(x^(2))/(2!)+(x^(3))/(3!)+(x^(4))/(4!)+(x^(5))/(5!)+..`
`rarra+b+c=e^(x)`
`rarr a+bw+cw^(2)=1+wx+(wx)^(2)/(2!)+(wx)^(3)/(3!)+..`
`rarr a+bw+cw^(2)=e^(wx)`
and `a+bw^(2)+cw=e^(w^(2))x`
So statemnet 1 is true
Now
`a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a+bw+cw^(2))(a+bw^(2)+cw)`
`rarr a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a+bw+cw^(2)))(a+bw^(2)+cw)`
`rarr a^(3)+b^(3)+c^(3)-3abc=e^(x)xxe^(wx)xxe^(w^(2)x)=e(1+w+w^(2))x=e^(0x)=1`
So statement 2 true
Now that statemnt 2 is not a correct explanation for statement1
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|37 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|26 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

p=sum_(n=0)^(oo) (x^(3n))/((3n)!) , q=sum_(n=1)^(oo) (x^(3n-2))/((3n-2)!), r = sum_(n=1)^(oo) (x^(3n-1))/((3n-1)!) then p + q + r =

If a=Sigma_(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma_(n=1)^(oo)(x^(3n-2))/(3n-2!) and C= Sigma_(n=1)^(oo)(x^(3n-1))/(3n-1!) then the value of a^(3)+b^(3)+C^(3)-3abc is

Sigma_(n=1)^(oo) (x^(2n))/(2n-1) is equal to

If a = Sigma_(n=1)^(oo) (2n)/(2n-1!),b=Sigma__(n=1)^(oo) (2n)/(2n+1!) then ab equals

Find the sum Sigma_(n=1)^(oo)(3n^2+1)/((n^2-1)^3)

If a = Sigma_(n=0)^(oo) x^(n), b = Sigma_(n=0)^(oo) y^(n), c = Sigma__(n=0)^(oo) (xy)^(n) " Where " |x|, |y| lt 1 , then -

"Evaluate "Sigma_(n=1)^(6) (3+2^(n)).

"Evaluate Sigma_(n=1)^(11) (2+3^(n))

The value of Sigma_(n=1)^(3) tan^(-1)((1)/(n)) is

The sum of series Sigma_(n=1)^(oo) (2n)/(2n+1)! is