Home
Class 12
MATHS
The sum of the series 1+(1+a)/(2!)+(1...

The sum of the series
`1+(1+a)/(2!)+(1+a+a^(2))/(3!)+(1+a+a^(2)+a^(3))/(4!)`+…..is

A

`(e^(a)-e)/(a-1)`

B

`(e^(a)-e)/(a+1)`

C

`(e^(2a)+1)/(a-1)`

D

`(e^(a)+e)/(a-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ S = 1 + \frac{1+a}{2!} + \frac{1+a+a^2}{3!} + \frac{1+a+a^2+a^3}{4!} + \ldots \] we can express the general term of the series. The \(n\)-th term can be written as: \[ T_n = \frac{1 + a + a^2 + \ldots + a^{n-1}}{n!} \] The expression \(1 + a + a^2 + \ldots + a^{n-1}\) is a geometric series with \(n\) terms, first term \(1\), and common ratio \(a\). The sum of this geometric series is given by: \[ 1 + a + a^2 + \ldots + a^{n-1} = \frac{1 - a^n}{1 - a} \quad \text{(for } a \neq 1\text{)} \] Thus, we can rewrite \(T_n\) as: \[ T_n = \frac{1 - a^n}{(1 - a)n!} \] Now, substituting this back into the series, we have: \[ S = \sum_{n=1}^{\infty} T_n = \sum_{n=1}^{\infty} \frac{1 - a^n}{(1 - a)n!} \] This can be separated into two sums: \[ S = \frac{1}{1 - a} \left( \sum_{n=1}^{\infty} \frac{1}{n!} - \sum_{n=1}^{\infty} \frac{a^n}{n!} \right) \] The first sum, \(\sum_{n=1}^{\infty} \frac{1}{n!}\), is the Taylor series expansion for \(e\), so: \[ \sum_{n=1}^{\infty} \frac{1}{n!} = e - 1 \] The second sum, \(\sum_{n=1}^{\infty} \frac{a^n}{n!}\), is the Taylor series expansion for \(e^a\), so: \[ \sum_{n=1}^{\infty} \frac{a^n}{n!} = e^a - 1 \] Substituting these results back into the expression for \(S\): \[ S = \frac{1}{1 - a} \left( (e - 1) - (e^a - 1) \right) \] Simplifying this gives: \[ S = \frac{1}{1 - a} \left( e - e^a \right) \] Thus, the final result for the sum of the series is: \[ S = \frac{e - e^a}{1 - a} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The sum of the series 1+(1+2)/(2!)+(1+2+2^(2))/(3!)+(1+2+2^(2)+2^(3)) +…is

The sum of the series 1+(2^(4))/(2!)+(3^(4))/(3!)+(4^(4))/(4!)+(5^(4))/(5!) +…..is

The sum of series (1)^(2)/(1.2!)+(1^(2)+2^(2))/(2.3!)+(1^(2)+2^(2)+3^(2))//(3.4!)+..+(1^(2)+2^(2)+…+n^(2))/(n.(n+1))!+..infty is equals to

The sum of the series 1 + (1)/(1!) ((1)/(4)) + (1.3)/(2!) ((1)/(4))^(2) + (1.3.5)/(3!) ((1)/(4))^(3)+ ... to infty , is

The sum of the series (1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(2))/(3!) +.. Is

The sum of the series 1+(2^(3))/(2!)+(3^(3))/(3!)+(4^(3))/(4!) +… to infty is

The sum of the series (1)/(2!)+(1)/(4!)+(1)/(6!)+..to infty is

The sum of the series (1)/(2!)+(1+2)/(3!)+(1+2+3)/(4!)+..to infty is equal to

The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(4^(2).5)/(4!) +..is

The sum of the series 1+(1^2+2^2)/(2!)+(1^(2)+2^(2)+3^(2))/(3!)+(1^(2)+2^(2)+3^(2)+4^2)/(4!) +.. Is

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. The value of sqrt(c ) rounded off of three decimal places is

    Text Solution

    |

  2. The sum of the series 1+(1+a)/(2!)+(1+a+a^(2))/(3!)+(1+a+a^(2)+a^(3...

    Text Solution

    |

  3. The sum of series Sigma(n=1)^(oo) (2n)/(2n+1)! is

    Text Solution

    |

  4. The value of log(3) e- log(9) e + log(27) e- log(81) e+…infty is

    Text Solution

    |

  5. Prove that (4)/(1!) + (11)/(21) + (22)/(3!) + (37)/(4!) + (56)/(5!) +...

    Text Solution

    |

  6. The coefficient of x^n in the expansion of (1+(x^(2))/(2!)+(x^(4))/(4!...

    Text Solution

    |

  7. The coefficent of x^(n) in the expansion of (1+(x^(2))/(2!)+(x^(4))/(4...

    Text Solution

    |

  8. If alpha,beta are the roots of the equation ax^(2)+bx+c=0 then log(a-b...

    Text Solution

    |

  9. The sum of the series 1+(1+2)/(2!)+(1+2+2^(2))/(3!)+(1+2+2^(2)+2^(3)...

    Text Solution

    |

  10. The sum of the series 1+(1^2+2^2)/(2!)+(1^(2)+2^(2)+3^(2))/(3!)+(1^(...

    Text Solution

    |

  11. The coefficent of x^(n) in the series 1+(a+bx)/(1!)+(a+bx)^(2)/(2!)+...

    Text Solution

    |

  12. The sum of the series (1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(...

    Text Solution

    |

  13. The value of (x+y)(x-y)+1/(2!)(x+y)(x-y)(x^2+y^2)+1/(3!)(x+y)(x-y)(x^4...

    Text Solution

    |

  14. If e^(x)=y+sqrt(1+y^(2) then the value of y is

    Text Solution

    |

  15. If (e^(5x)+e^(x))/(e^(3x)) is expand in a series of ascending powers o...

    Text Solution

    |

  16. In the expansion of (e^(7x)+e^(3x))/(e^(5x)) the constant term is

    Text Solution

    |

  17. The value of sqrt(2-1)/sqrt(2)+3-2sqrt(2)/(4)+(5sqrt2-7/6)sqrt(2)+17-1...

    Text Solution

    |

  18. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  19. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  20. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |